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Pytanie 1

Rozkład dwumianowy, rozkład geometryczny i ich własności. Własność
bez pamięci, wartość oczekiwana, wariancja, wyższe momenty. Funkcje
tworzące momentów.

1.1 Rozkład dwumianowy

Definicja 1.1.1. Mówimy, że zmienna losowa X ma rozkład dwumianowy z parametrami
n, p (Oznaczana poprzez B(n, p)), jeśli dla j = 0, 1, ..., n:

P (X = j) =

(
n

j

)
pj(1− p)(n−j)

Jest tak, gdy powtarzamy jakiś eksperyment wielokrotnie (n razy, gdzie p to szansa powodzenia)
i liczymy, ile razy eksperyment się powiódł.

Fakt 1.1.1. Rozkład dwumianowy jest poprawnie zdefiniowany

n∑
j=0

P(X = j) = (p+ (1− p))n = 1

Twierdzenie 1.1.1. Niech X ma rozkład dwumianowy z parametrami n, p. Wtedy

E[X] = np

Dowód.

X =
n∑

i=1

Xi, Xi =

1, sukces w i-tej próbie

0 wpp

E[X] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi] =
n∑

i=1

P(Xi = 1) =
n∑

i=1

p = np
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Twierdzenie 1.1.2. Niech X ma rozkład dwumianowy z parametrami n, p. Wtedy

Var[X] = np(1− p)

Dowód.

Var[X] = Var

[
n∑

i=1

Xi

]
=

n∑
i=1

Var[Xi]

Gdzie Xi to indykatory dla kolejnych zdarzeń. Wariancja dla jednego indykatora:

Var[Xi] = E
[
[(Xi − E[Xi])

2
]

= P(Xi = 0) · (0− p)2 + P(Xi = 1) · (1− p)2

= (1− p)p2 + p(1− p)2

= (1− p)p

Sumując po i dostajemy:

n∑
i=1

Var[Xi] =
n∑

i=1

(1− p)p = np(1− p)

Twierdzenie 1.1.3. Funkcja tworząca momenty:

MX(t) = (1− p+ pet)n

Dowód.

MX(t) = E
[
etX
]

=
n∑

j=0

(
n

j

)
pj(1− p)n−jetj

=
n∑

j=0

(
n

j

)
(pet)j(1− p)n−j

= ((1− p) + pet)n

1.2 Rozkład geometryczny

Definicja 1.2.1. Mówimy, że zmienna losowa X ma rozkład geometryczny z parametrem
p ∈ (0, 1) jeśli dla n > 0

P(X = n) = (1− p)n−1 · p

2
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Twierdzenie 1.2.1 (Lemat 2.8 P&C). Rozkład geometryczny jest bez pamięci tzn. jeśli X
ma rozkład geometryczny z parametrem p to

∀n,k P(X = n+ k | X > k) = P(X = n)

Dowód.

P(X = n+ k | X > k) =
P(X = n+ k ∧X > k)

P(X > k)

=
P(X = n+ k)

P(X > k)

=
(1− p)n+k−1 · p

(1− p)k

= (1− p)n−1 · P

= P(X = n)

Twierdzenie 1.2.2. Niech X ma rozkład geometryczny z parametrem p. Wtedy tworząca tej
zmiennej wynosi

MX(t) =
pet

1− (1− p)et

dla t < − ln(1− p).

Dowód.

MX(t) = E
[
etX
]

=
∞∑
i=1

(1− p)i−1peit

=
p

1− p
·

∞∑
i=1

(
(1− p)et

)i
=

p

1− p
·

((
∞∑
i=0

(
(1− p)et

)i)− 1

)

=
p

1− p
·
(

1

1− (1− p)et
− 1

)
=

p

1− p
· (1− p)et

1− (1− p)et

=
pet

1− (1− p)et

3
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Skorzystaliśmy tutaj z faktu, że szereg

∞∑
i=1

(
(1− p)et

)i
jest zbieżny. Dzieje się tak gdy

(1− p)et < 1

et <
1

1− p

t < − ln(1− p)

Wniosek 1.2.1. W oparciu na funkcję tworzącą momenty, możemy obliczyć wartość oczeki-
waną, wariancję, oraz dowolne wyższe momenty Wiemy, że M

(n)
X (0) = E[Xn]. Obliczamy więc

M
(1)
X (t) oraz M

(2)
X (t). Otrzymujemy:

M
(1)
X (t) = p(1− (1− p)et)−2

M
(2)
X (t) = 2p(1− p)(1− (1− p)et)−3e2t + p(1− (1− p)et)−2et

Po podstawieniu t = 0 otrzymujemy znane już wartości:

M
(1)
X (0) = E[X] =

1

p

M
(2)
X (0) = E

[
X2
]
=

2− p

p2
=⇒ Var[X] =

1− p

p2

4



Pytanie 2

Problem kolekcjonera kuponów (wartość oczekiwana). Oczekiwana liczba
porównań w algorytmie sortowania Quicksort.

2.1 Problem kolekcjonera kuponów

Wyobraźmy sobie problem, który jest bliski wielu osobom. Próbujemy przepchać program na
satori ale jak na złość mamy ANS. Sfrustrowani zaczynamy pisać własne testy w nadziei że
znajdziemy przypadek brzegowy. I tutaj pojawia się pytanie – jeśli generujemy testy losowo
a możliwych przypadków jest n to ile testów potrzebujemy w oczekiwaniu wygenerować aby
mieć pewność, że pokryliśmy każdy przypadek?

Problem ten, jak wiele podobnych, możemy modelować za pomocą zbierania kuponów – mamy
ich do zebrania n a szansa na uzyskanie i-tego rodzaju jeśli zebraliśmy już i − 1 wynosi pi =
1− i−1

n
Niech Xi oznacza czas czekania na i-ty kupon jeśli mamy już i− 1 innych. Wtedy X =∑n

i=1Xi jest tym czego szukamy – czasem otrzymania każdego kuponu (pokrycia wszystkich
przypadków testowych).

Zauważmy jeszcze, że Xi ma rozkład geometryczny z parametrem pi zatem E[Xi] =
1
pi
= n

n−i+1

E[X] =
n∑

i=1

E[Xi] =
n∑

i=1

n

n− i+ 1
= n

n∑
i=1

1

i
= n ·Hn = n lnn+Θ(n)

Ostatnia równość wynika z 28.1.1.

2.2 Oczekiwana liczba porównań Quicksorta

Quicksort jaki jest każdy widzi – pamiętamy z ASD, że jego złożoność to pesymistycznie O(n2),
ale w losowym przypadku Θ(n lg n).

Twierdzenie 2.2.1 (2.11 P&C). Rozważmy standardowy algorytm Quicksort, w którym pi-
vota wybieramy losowo, niezależnie i jednostajnie. Wtedy oczekiwana liczba porównań wynosi
2n lnn+O(n).
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Dowód. Niech x1, . . . , xn będzie wejściowym ciągiem n różnych liczb. Niech y1, . . . yn będzie
posortowaną permutacją tych wartości.

Definiujemy indykatory dla i < j; niech

Xi,j =

1 jeśli yi, yj zostały porównane chociaż raz

0 wpp.

Łączna liczba porównań X wynosi X =
∑n−1

i=0

∑n
j=i+1Xi,j Oczekiwana liczba porównań wynosi

zatem

E[X] =
n−1∑
i=0

n∑
j=i+1

E[Xi,j]

Zastanówmy się kiedy elementy yi, yj są porównywane. Na pewno któryś z nich musi zostać
wybrany jako pivot. Ale ponadto muszą być w momencie tego wyboru na jednej liście, która
jest aktualnie sortowana. Niech Y i,j = {yi, . . . , yj}.

Jeśli wybrany zostanie pivot który leży poza tą listą, to nie dojdzie do „rozspójnienia” tej listy
i kiedyś będzie mogło nadal dojść do porównania yi z yj.

Jeśli wybrany zostanie pivot z tej listy różny od yi oraz yj, to te 2 elementy już nigdy nie
zostaną ze sobą porównane, jako że będą znajdywać się na 2 oddzielnych listach.

W takim razie Xi,j = 1 wtedy i tylko wtedy, gdy pierwszym pivotem wybranym ze zbioru Y i,j

jest element yi lub element yj.

Jako, że losowanie jest jednostajne i w ogóle, to każdy element z listy ma dokładnie takie same
szanse na „zostanie pivotem”. Jako, że elementów na liście jest j−i+1, to prawdopodobieństwo,
że wybierzemy y1 lub yj wynosi 2

j−i+1
, czyli E[Xi,j] =

2
j−i+1

.

Aby policzyć ostateczny wynik sumujemy się po wszystkich parach i < j:

E[X] =
n−1∑
i=1

n∑
j=i+1

2

j − i+ 1

= 2
n−1∑
i=1

n−i+1∑
k=2

1

k

= 2
n∑

k=2

n−k+1∑
i=1

1

k

= 2
n∑

k=2

n+ 1− k

k

= 2

(
(n+ 1)

n∑
k=2

1

k

)
− 2(n− 1)

= 2

(
(n+ 1)

(
n∑

k=1

1

k

)
− (n+ 1)

)
− 2(n− 1)

6
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Teraz korzystamy z 28.1.1 i dostajemy

E[X] = 2(n+ 1) ·Hn −Θ(n)

= 2(n+ 1) · (lnn+Θ(1))−Θ(n)

= 2n lnn+Θ(n)

7



Pytanie 3

Własności wariancji. Nierówność Markowa. Nierówność Czebyszewa i jej
zastosowanie w problemie kolekcjonera kuponów.

3.1 Wariancja

Definicja 3.1.1. Wariancję zmiennej losowej X definiujemy jako

Var[X] = E
[
(X − E[X])2

]
= E

[
X2
]
− E[X]2

Czyli jest to drugi moment zmiennej X przesuniętej o swoją wartość oczekiwaną. Intuicyjnie
jest to miara tego, jakiego odchylenia od wartości oczekiwanej możemy się spodziwać.
Operator wariancji nie jest liniowy.

Definicja 3.1.2. Odchylenie standardowe zmiennej losowej X definiujemy jako

σ(X) =
√

Var[X]

Definicja 3.1.3. Kowariancję zmiennych losowych X oraz Y definiujemy jako

Cov(X,Y ) = E[(X − E[X]) · (Y − E[Y ])]

Twierdzenie 3.1.1.
∀a,b∈R Var[bX + a] = b2Var[X]
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Dowód.

Var[bX + a] = E
[
(bX + a)2

]
− E[bX + a]2

= E
[
b2X2 + 2abX + a2

]
− (bE[X] + a)2

= b2E
[
X2
]
+ 2abE[X] + a2 − b2E[X]2 − 2abE[X]− a2

= b2
(
E
[
X2
]
− E[X]2

)
= b2Var[X]

Twierdzenie 3.1.2. Dla dowolnych zmiennych losowych X,Y zachodzi

Var[X + Y ] = Var[X] + Var[Y ] + 2Cov(X, Y )

Dowód. Rozpisujemy Var[X + Y ] z definicji.

Var[X + Y ] = E
[
(X + Y − E[X + Y ])2

]
= E

[
((X − E[X]) + (Y − E[Y ]))2

]
= E

[
(X − E[X])2

]
+ E

[
(Y − E[Y ])2

]
+ 2E[(X − E[X]) · (Y − E[Y ])]

= Var[X] + Var[Y ] + 2Cov(X,Y )

Twierdzenie 3.1.3. Dla niezależnych zmiennych losowych X, Y

Cov(X,Y ) = 0

a co za tym idzie
Var[X + Y ] = Var[X] + Var[Y ]

Dowód.

Cov(X,Y ) = E[(X − E[X]) · (Y − E[Y ])]

= 1E[X − E[X]] · E[Y − E[Y ]]

= (E[X]− E[X]) · (E[Y ]− E[Y ])

= 0

1Możemy to zrobić przez 28.2.1

9
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Twierdzenie 3.1.4. Niech X1, . . . , Xn będą parami niezależne. Wtedy

Var

[
n∑

i=1

Xi

]
=

n∑
i=1

Var[Xi]

Dowód. Skoro nasze zmienne są parami niezależne, to dla dowolnych Xi ̸= Xj mamy Cov(Xi, Xj) =

0. W takim razie

Var

[
n∑

i=1

Xi

]
= E

( n∑
i=1

(Xi − E[Xi])

)2


=
n∑

i=1

E
[
(Xi − E[Xi])

2]+ n∑
i=1

n∑
j=1

E[(Xi − E[Xi]) · (Xj − E[Xj])]

=
n∑

i=1

Var[Xi] +
n∑

i=1

n∑
j=1

Cov(Xi, Xj)

=
n∑

i=1

Var[Xi]

3.2 Nierówność Markowa

Twierdzenie 3.2.1. Jeśli X jest zmienną losową, która przyjmuje nieujemne wartości to

P(X ≥ a) ≤ E[X]

a

Dowód. Niech I będzie indykatorem

I =

1 gdy X ≥ a

0 wpp.

Skoro X ≥ 0 to I ≤ X
a
. Zatem

P(X ≥ a) = P (I = 1) = E[I] ≤ E[X]

a

10
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3.3 Nierówność Czebyszewa

3.3.1 Definicja

Twierdzenie 3.3.1 (Twierdzenie 3.6 P&C). Dla dowolnego a > 0

P (|X − E[X]| ≥ a) ≤ Var[X]

a2

Dowód. Korzystamy z nierówności Markowa

P (|X − E[X]| ≥ a) = P ((X − E[X])2 ≥ a2) ≤
E
[
(X − E[X])2

]
a2

=
Var[X]

a2

3.3.2 Kolekcjoner kuponów

Niech X1, . . . , Xn opisują czasy czekania na i-ty kupon oraz X =
∑

Xi – łączny czas czekania.

Aby w ogóle móc liczyć coś nierównością Czebyszewa potrzebujemy obliczyć Var[X].

Skorzystamy tutaj z bardzo wygodnego twierdzenia 3.1.4 a następnie z 1.2.1 aby dostać

Var[X] =
n∑

i=1

Var[Xi]

=
n∑

i=1

1− pi
p2i

≤
n∑

i=1

1

p2i

=
n∑

i=1

(
n

n− i+ 1

)2

= n2 ·
n∑

i=1

1

i2

≤ n2π
2

6

Teraz wkładamy to do nierówności Czebyszewa:

P (|X − nHn| ≥ nHn) ≤
Var[X]

n2H2
n

=
π2

6H2
n

= O

(
1

ln2 n

)

11



Pytanie 4

Ogólny schemat nierówności Czernowa. Nierówność Czernowa dla sum
niezależnych prób Poissona. Zastosowanie tej nierówności: niezależne
rzuty sprawiedliwą monetą.

4.1 Nierówność Czernowa

4.1.1 Definicja

Łączymy ze sobą dwie rzeczy – funkcje tworzące momenty, oraz nierówność Markowa.

Twierdzenie 4.1.1.

∀t>0 P (X ≥ a) = P (etX ≥ eta) ≤
E
[
etX
]

eta

oraz

∀t<0 P (X ≤ a) = P (etX ≥ eta) ≤
E
[
etX
]

eta

w szczególności

P(X ≥ a) ≤ min
t>0

{
E[etx]
eta

}
Dowód. Niezależnie od tego jakie wartości przyjmuje X oraz ile wynosi t to etX oraz eta zawsze
będą dodatnie. Monotoniczność etx przy ustalonym t zależy jedynie od znaku zatem przejścia
między prawdopodobieństwami zachodzą.

Ograniczenie górne uzyskujemy korzystając z nierówności Markowa zastosowanej do (dodat-
nich) wartości etX oraz eta.

4.1.2 Próby Poissona

Definicja 4.1.1. Próbami Poissona nazywany ciąg zmiennych losowych X1, . . . , Xn, dla
których

P (Xi = 1) = pi ∧ P (Xi = 0) = 1− pi
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Ponadto definiujemy
µ = E

[∑
Xi

]
=
∑

E[Xi] =
∑

pi

Dodatkowo, jeżeli ∀i,j∈[n] pi = pj, to nazywamy to próbami Bernoulliego.

Twierdzenie 4.1.2. Niech X1, . . . , Xn to niezależne próby Poissona. Dodatkowo oznaczamy
X =

∑n
i=1Xi i µ = E[X]. Wtedy

1. jeśli δ > 0, to P(X ≥ (1 + δ)µ) ≤
(

eδ

(1+δ)1+δ

)µ
2. jeśli 1 ≥ δ > 0, to P(X ≥ (1 + δ)µ) ≤ e

−µδ2

3

3. jeśli R ≥ 6µ, to P(X ≥ R) ≤ 2−R

Dowód. Liczymy funkcję tworzącą

MXi
(t) = E

[
etXi

]
= pie

t + (1− pi) = 1 + pi
(
et − 1

)
≤ epi(e

t−1).

Zatem

MX(t) =
n∏

i=1

MXi
(t) ≤

n∏
i=1

epi(e
t−1) = e(e

t−1)µ.

Ustalmy t > 0, mamy

P (X ≥ (1 + δ)µ) = P
(
etX ≥ et(1+δ)µ

)
≤

E
[
etX
]

et(1+δ)µ
≤ e(e

t−1)µ

et(1+δ)µ
.

Niech t = ln(1 + δ) > 0. Wychodzi nam P (X ≥ (1 + δ)µ) ≤
(

e1+δ−1

(1+δ)1+δ

)µ
, co kończy dowód

pierwszej części.

Punkt drugi dowodzimy korzystając z pierwszego, wystarczy pokazać, że dla δ ∈ (0, 1] jest

eδ

(1 + δ)1+δ
≤ e−

δ2

3 .

Logarytmujemy stronami, chcemy pokazać, że δ − (1 + δ) ln(1 + δ) + δ2

3
≤ 0. Oznaczmy lewą

stronę przez f(δ). Liczymy pochodne:

f ′(δ) = 1− 1 · ln(1 + δ)− 1 + δ

1 + δ
+

2

3
δ = − ln(1 + δ) +

2

3
δ,

f ′′(δ) = − 1

1 + δ
+

2

3
.

f ′(0) = 0, a potem maleje do δ = 1
2

(tam druga pochodna się zeruje, przedtem ujemna), potem
rośnie, ale f ′(1) < 0, więc jest ujemna na całym (0, 1].

13
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f(δ) tylko maleje na (0, 1], więc nierówność działa, bo f(0) = 0.

Dowodząc punkt trzeci zakładamy R ≥ 6µ. Niech R = (1 + δ)µ, czyli δ = R
µ
− 1 ≥ 5.

P (X ≥ (1 + δ)µ) ≤

(
eδ

(1 + δ)1+δ

)µ

≤
(

e

1 + δ

)(1+δ)µ

≤
(e
6

)R
≤
(
1

2

)R

= 2−R.

4.1.3 Rzuty monetą

Przykład 4.1.1. Chcemy ograniczyć z góry prawdopodobieństwo, że przy n rzutach monetą
wyrzucimy orła więcej niż 3

4
n razy. Widzimy, że nasze rzuty to niezależne próby Poissona o

p = 1
2
, µ = n

2
, δ = 1

2
, a więc możemy użyć wzoru 2. W takim razie mamy

P

(
X ≥ 3

4
n

)
≤ e

−µδ2

3 = e
−n

2 · 14
3 = e

−n
24

14



Pytanie 5

Kule i urny: obciążenie najcięższej urny prawie zawsze jest co najwyżej
3 lnn
ln lnn .

5.1 Kule i urny - ograniczenie górne

Zanim zaczniemy, zaprezentujemy dwa proste lematy potrzebne w oszacowaniu

Lemat 5.1.1. Dla dowolnych n ≥ M(
n

M

)(
1

n

)M

≤ 1

M !

Dowód. (
n

M

)(
1

n

)M

=
n!

M ! · (n−M)!nM
=

1

M !
· (n−M + 1) · · · · · n

nM
≤ 1

M !

Lemat 5.1.2. Dla dowolnego n
1

n!
≤
( e
n

)n
Dowód. Korzystamy z rozwinięcia ek w szereg Taylora:

ek =
∞∑
i=0

ki

i!
>

kk

k!

Przekształcając otrzymujemy
ek

kk
>

1

k!

co daje nierówność z tezy.

Rozważmy bardzo prosty model - wrzucamy sobie n kul do n urn niezależnie i jednostajnie.
Oczywiście średnio w jednej urnie spodziewamy się zobaczyć jedną kulę, ale ile spodziewamy
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się zobaczyć kul w najbardziej zapełnionej urnie? Na to pytanie odpowiemy twierdzeniem.

Twierdzenie 5.1.1 (Lemat 5.1 P&C). Jeśli wrzucamy n kul do n urn to prawdopodobieństwo,
że najcięższa urna zawiera co najmniej M = 3 lnn

ln lnn
kul wynosi co najwyżej 1

n
dla odpowiednio

dużych n.

Dowód. Nie ma co się zrażać mnogością logarytmów; sam w sobie dowód jest względnie prosty –
stosujemy dwa razy union-bound, a ograniczenie z tezy po prostu pałujemy naszymi lematami,
na egzaminie raczej nie będziecie potrzebowali obliczeń.

Prawdopodobieństwo, że ustalony podzbiór M kul wyląduje w ustalonej urnie wynosi
(
1
n

)M
Różnym podzbiorów jest

(
n
M

)
, zatem z union bounda dostajemy ograniczenie na prawdopodo-

bieństwo, że w ustalonej urnie jest co najmniej M kul wynosi(
n

M

)
·
(
1

n

)M

Korzystamy teraz z obu lematów i ograniczamy prawdopodobieństwo na to, że istnieje urna w
której jest co najmniej M kul przez co najwyżej

n
( e

M

)M
Teraz wstawiamy magiczne M z tezy i dostajemy:

n
( e

M

)M
≤ n

(
e ln lnn

3 lnn

)(3 lnn)/(ln lnn)

Zauważamy, że e ≤ 3

≤ n

(
ln lnn

lnn

)(3 lnn)/(ln lnn)

Aby pokazać postulowaną w tezie nierówność bierzemy obustronnie logarytm

n

(
ln lnn

lnn

)(3 lnn)/(ln lnn)

≤ 1

n

lnn+ ((ln ln lnn)− (ln lnn))

(
3 lnn

ln lnn

)
≤ − lnn

Wymnażamy i przenosimy na jedną stronę

− lnn+
3(lnn)(ln ln lnn)

ln lnn
≤ 0

Sprowadzamy do wspólnego mianownika

(lnn) · (3(ln ln lnn)− (ln lnn))

ln lnn
≤ 0

16
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Ponieważ lnn i ln lnn są od pewnego momentu dodatnie to nierówność sprowadza się do po-
kazania, że

ln lnn ≥ 3 ln ln lnn

co już jest trywialne.

17



Pytanie 6

Rozkład Poissona i jego własności: momenty, suma niezależnych zmien-
nych, tworząca momentów i ograniczenia Chernowa.

6.1 Rozkład Poissona

6.1.1 Podstawowe własności

Definicja 6.1.1. Mówimy, że zmienna losowa X ma rozkład Poissona z parametrem λ jeśli

∀n∈N P(X = n) = e−λ · λ
n

n!

Aby upewnić się, że jest to poprawny rozkład policzmy
∑∞

n=0 P (X = n)

∞∑
n=0

P (X = n) =
∞∑
n=0

e−λ · λ
n

n!

= e−λ

∞∑
n=0

λn

n!

= e−λ · eλ = 1

Twierdzenie 6.1.1. Niech X ma rozkład Poissona z parametrem λ. Wtedy

E[X] = λ
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Dowód.

E[X] =
∞∑
n=0

n · P (X = n)

=
∞∑
n=0

n · e−λ · λ
n

n!

= e−λ

∞∑
n=1

λn

(n− 1)!

= λe−λ

∞∑
n=1

λn−1

n!

= λe−λ

∞∑
n=0

λn

n!

= λ

Twierdzenie 6.1.2 (Lemat 5.3 P&C). Jeśli zmienna X ma rozkład Poissona z parametrem λ

to
MX(t) = exp

(
λ
(
et − 1

))
Dowód.

MX(t) = E
[
etX
]

=
∞∑
n=0

etn · e−λ · λ
n

n!

= e−λ

∞∑
n=0

(λet)
n

n!

= exp(−λ) · exp
(
λet
)

= exp
(
λ(et − 1)

)
W przedostatnim przejściu korzystamy z faktu, że

∑∞
0

xn

n!
= exp(x)

Twierdzenie 6.1.3 (Lemat 5.2 P&C). Jeśli X ma rozkład Poissona z parametrem λX a Y

rozkład Poissona z parametrem λY , a ponadto obie zmienne są niezależne to X+Y ma rozkład
Poissona z parametrem λX + λY

19
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Dowód. Ponieważ X i Y są niezależne to

MX+Y (t) = MX(t) ·MY (t)

= exp
(
λX(e

t − 1)
)
· exp

(
λY (e

t − 1)
)

= exp
(
(λX + λY )(e

t − 1)
)

Skoro rozkład zmiennej X+Y tworzony jest przez funkcję, która wygląda jak rozkład Poissona,
to musi być ona rozkładem Poissona z parametrem λX + λY

Twierdzenie 6.1.4. Niech X ma rozkład Poissona z parametrem λ. Wtedy

Var[X] = λ

Dowód. Liczymy drugą pochodną MX(t) = exp(λ(et − 1)) i wychodzi.

6.1.2 Ograniczenia Czernowa

Twierdzenie 6.1.5. Niech X będzie zmienną o rozkładzie Poissona z parametrem µ. Wtedy:

1. jeśli x > µ, to P (X ≥ x) ≤ e−µ(eµ)x

xx

2. jeśli x < µ, to P (X ≤ x) ≤ e−µ(eµ)x

xx

3. jeśli δ > 0, to P (X ≥ (1 + δ)µ) ≤
(

eδ

(1+δ)1+δ

)µ
4. jeśli 0 < δ < 1, to P (X ≤ (1− δ)µ) ≤

(
e−δ

(1−δ)1−δ

)µ
Dowód. Niech t > 0, x > µ. Mamy

P (X ≥ x) ≤
E
[
etX
]

etx
= eµ(e

t−1)−tx ≤ eµ
x
µ
−µ−ln( x

µ)x = e−µ ·
(eµ
x

)x
,

gdzie podstawiliśmy t = ln
(

x
µ

)
> 0. Drugi punkt robi się identycznie, wtedy mamy ln

(
x
µ

)
< 0.

Trzeci i czwarty punkt są po prostu podstawieniem do poprzednich.

20



Pytanie 7

Aproksymacja Poissona oraz jej zastosowanie do problemu kul i urn: ob-
ciążenie najcięższej urny jest prawie zawsze co najmniej lnn

ln lnn .

7.1 Aproksymacja Poissona

7.1.1 Definicja

Czasem mamy do czynienia ze zmiennymi, które pojedynczo zachowują się grzecznie, ale jako
całość są powiązane w sposób, który istotnie utrudnia ich analizę. Z pomocą przychodzi Aprok-
symacja Poissona, w której uniezależnimy wszystkie zmienne, a następnie będziemy analizować
ich zachowanie pod pewnymi warunkami.

Bardziej formalnie opisuje to poniższe twierdzenie.

Twierdzenie 7.1.1 (Twierdzenie 5.6 P&C). Niech

X
(k)
1 , . . . , X(k)

n

opisują (faktyczne) rozmieszczenie k kul w n urnach.

Ponadto, niech
Y

(m)
1 , . . . , Y (m)

n

będą niezależnymi zmiennymi z rozkładem Poissona z parametrem λ = m
n

Wtedy

∀m : P
(
X

(k)
1 = k1, . . . , X

(k)
n = kn

)
= P

(
Y

(m)
1 = k1, . . . , Y

(m)
n = kn |

n∑
i=1

Y
(m)
i = k

)
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Dowód. Policzmy najpierw lewą stronę równości

P
(
X

(k)
1 = k1, . . . , X

(k)
n = kn

)
=

1

nk
·
(
k

k1

)
·
(
k − k1
k2

)
· · · · ·

(
kn
kn

)
=

k!

k1! · · · · · kn! · nk

Policzmy teraz prawą stronę

P

(
Y

(m)
1 = k1, . . . , Y

(m)
n = kn |

n∑
i=1

Y
(m)
i = k

)
=

P
(
Y

(m)
1 = k1 ∧ · · · ∧ Y

(m)
n = kn

)
P
(∑

Y
(m)
i = k

)
Korzystamy z faktu, że nasze zmienne są niezależne, oraz suma n Poissonów z parametrem
λ = m

n
ma rozkład Poissona z parametrem m

=

(
n∏

i=1

e−λ · λ
ki

ki!

)
· k!

e−mmk
=

k!

k1! · · · · · kn!
· e

−nλ · λk

e−mmk

=
k!

k1! · · · · · kn!
·
e−m ·

(
m
n

)k
e−m ·mk

=
k!

k1! · · · · · kn! · nk

Po obu stronach wyszło to samo, fajnie.

Skoro umiemy zamieniać kule i urny na warunkowe Poissony to fajnie byłoby coś umieć o nich
powiedzieć.

Twierdzenie 7.1.2. Niech f(x1, . . . , xn) będzie funkcją zwracającą nieujemne wartości. Wtedy

E
[
f
(
X

(m)
1 , . . . , X(m)

n )
)]

≤ e
√
m · E

[
f
(
Y

(m)
1 , . . . , Y (m)

n

)]
Dowód.

E
[
f
(
Y

(m)
1 , . . . , Y (m)

n

)]
=

∞∑
k=0

E
[
f
(
Y

(m)
1 , . . . , Y (m)

n

)
|
∑

Y
(m)
i = k

]
· P
(∑

Y
(m)
i = k

)
≥ E

[
f
(
Y

(m)
1 , . . . , Y (m)

n

)
|
∑

Y
(m)
i = m

]
· P
(∑

Y
(m)
i = m

)
= E

[
f
(
X

(m)
1 , . . . , X(m)

n )
)]

· e−m · m
m

m!

≥ E
[
f
(
X

(m)
1 , . . . , X(m)

n )
)]

· 1

e
√
m

22
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7.1.2 Kule i urny

W twierdzeniu 5.1.1 pokazaliśmy, że górne ograniczenie na liczbę kul w najcięższej urnie to z
dużym prawdopodobieństwem O

(
lnn

ln lnn

)
.

Teraz pokażemy, że dolne ograniczenie to z dużym prawdopodobieństwem Ω
(

lnn
ln lnn

)
.

Twierdzenie 7.1.3 (Lemat 5.12 P&C). Dla wystarczająco dużego n, jeśli wrzucamy n kul do
n urn to prawdopodobieństwo, że najcięższa urna zawiera co najwyżej M = lnn

ln lnn
kul wynosi

co najwyżej 1
n
.

Dowód. Rozważmy tę sytuację w modelu Poissona – liczba kul w ustalonej urnie ma rozkład
Poissona z parametrem λ = n

n
= 1.

W takim razie, prawdopodobieństwo, że ustalona urna zawiera co najmniej M kul wynosi

∞∑
k=⌈M⌉

e−1 · 1
k

k!
≥ 1

eM !

Prawdopodobieństwo, że każda urna zawiera mniej niż M kul wynosi zatem co najwyżej(
1− 1

eM !

)n

≤ exp
(
− n

eM !

)
Z faktu, że 1− x ≤ e−x.

Jeśli nasze M jest na tyle fajne, że zachodzi

exp
(
− n

eM !

)
≤ 1

n2

to wtedy na mocy twierdzenia 7.1.2 prawdopodobieństwo, że w prawdziwym modelu każda
urna ma mniej niż M kul wynosi co najwyżej

e
√
n · 1

n2
<

1

n

Pozostaje pokazać, że M = lnn
ln lnn

jest wystarczające dla dużych n.

Bierzemy zatem obustronnie logarytm z zadanego warunku

− n

eM !
≤ −2 lnn

n

eM !
≥ 2 lnn

n

2e lnn
≥ M !

23
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Znowu bierzemy logarytm obustronnie (bo możemy, lol)

lnn− ln lnn− ln(2e) ≥ ln(M !)

Wykorzystamy teraz magiczne oszacowanie

M ! ≤ e
√
M

(
M

e

)M

≤ M

(
M

e

)M

i dostajemy

ln(M !) ≤ lnM +M lnM −M

= M · ((ln lnn)− (ln ln lnn)) + lnM −M

= (M · (ln lnn)−M)− (M · (ln ln lnn)− lnM)

= (lnn−M)− (M · (ln ln lnn)− lnM)

Teraz korzystamy z faktu, że lnM ∈ o(M · (ln ln lnn))

≤ (lnn−M) = lnn− lnn

ln lnn

I jeszcze korzystamy z faktu, że (ln lnn)2 ∈ o(lnn) a zatem ln lnn ∈ o
(

lnn
ln lnn

)
. Możemy więc

zamienić lnn
lnn ln

na ln lnn+ ln 2e

≤ lnn− ln lnn− ln(2e)

czyli nasze M działa. Uff.
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Problem kolekcjonera kuponów: granica prawdopodobieństwa, że nie zbie-
rzemy wszystkich n kuponów po n lnn+ cn krokach.

8.1 Granica kolekcjonera kuponów

Twierdzenie 8.1.1. Niech X będzie liczbą zebranych kuponów aż do zebrania wszystkich n

rodzajów. Wtedy dla dowolnej stałej c

lim
n→∞

P (X > n lnn+ cn) = 1− e−e−c

Dowód. O zbieraniu kuponów możemy myśleć jak o wrzucaniu kul do urn – wrzucenie kuli do
odpowiedniej urny odpowiada zebraniu odpowiedniego kuponu.

Będziemy zatem liczyć prawdopodobieństwo, że po wrzuceniu m = n lnn + cn kul do n urn
jakaś urna nadal pozostaje pusta.

Rozważmy ten problem w modelu Poissona, a potem pokażemy jak wyciągnąć z tego wynik
dla rzeczywistego modelu. Mamy zatem λ = m

n
= lnn+ c

Prawdopodobieństwo, że ustalona urna jest pusta wynosi

e−λ · λ
0

0!
= e−(lnn+c) =

e−c

n

Ponieważ w modelu Poissona urny są niezależne to prawdopodobieństwo, że żadna urna nie
jest pusta (czyli każda ma co najmniej jedną kulę) wynosi(

1− e−c

n

)n

Nazwijmy to zdarzenie E . Z powyższego faktu mamy

lim
n→∞

P (E) = e−e−c
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Wszystko fajnie i w ogóle, ale my byśmy chcieli dostać rzeczywiste prawdopodobieństwo E , któ-
rego nie możemy sobie tak po prostu przenieść z Poissona na rzeczywisty model, bo pamiętamy
z twierdzenia 7.1.1, że wolno nam jedynie przejść równością warunkową tj. P (E | X = m), a
tego nie znamy.

Aby sobie z tym poradzić rozbijemy nasze zdarzenie E na dwie części. Ustalamy δ =
√
m lnm

i rozbijamy za pomocą prawdopodobieństwa całkowitego:

P (E) = P (E | |X −m| ≤ δ) · P (|X −m| ≤ δ) + P (E | |X −m| > δ) · P (|X −m| > δ)

Teraz chcemy pokazać dwie rzeczy. Po pierwsze, że drugi składnik jest pomijalnie mały (zbiega
do zera). Po drugie, że pierwszy składnik zbiega do P (E | X = m) czyli tego co próbujemy
obliczyć.

1. Szacujemy P (|X −m| > δ) przy pomocy nierówności Czebyszewa.

Ponieważ X ma rozkład Poissona z parametrem µ = m to

Var[X] = µ = m

W takim razie z nierówności Czebyszewa

P (|X −m| > δ) ≤ Var[X]

δ2
=

m

m lnm
=

1

lnm
∈ o(1)

2. Szacujemy różnicę między tym czego szukamy a tym co mamy:

|P (E | |X −m| ≤ δ)− P (E | X = m)|

Zauważamy dość naturalny fakt – im więcej kul wrzucamy tym większa szansa na to, że
każda ma jakąś kulę. Innymi słowy

P (E | X = m) ≥ P (E | X = m− δ)

oraz
P (E | |X −m| ≤ δ) ≤ P (E | X = m+ δ)

Możemy zatem zastąpić odpowiednie wyrażenia przez ich oszacowania aby dostać słabsze
ograniczenie:

|P (E | |X −m| ≤ δ)− P (E | X = m)| ≤ P (E | X = m+ δ)− P (E | X = m− δ)

Wyrażenie po prawej stronie oddaje sytuację, kiedy wrzuciliśmy m−δ kul, ale nadal jakaś
urna pozostaje pusta, natomiast po dorzuceniu kolejnych 2δ kul została ona zapełniona.
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Prawdopodobieństwo, że konkretna kula trafi do konkretnej pustej urny wynosi 1
n
, zatem

prawdopodobieństwo, że jakaś kula trafi do tej urny jest ograniczone przez union bound:

P (E | X = m+ δ)− P (E | X = m− δ) ≤ 2δ

n
=

2
√
m lnm

n
= 2

√
m lnm

n2

Przypominamy sobie, że m = n lnn + cn, zatem m lnm ∈ o(n2). W takim razie nasze
oszacowanie zbiega do zera, a co za tym idzie, szacowana różnica też.

Korzystając z powyższych faktów, dochodzimy do wniosku, że

lim
n→∞

P (E) = P (E | |X −m| ≤ δ) · P (|X −m| ≤ δ) + P (E | |X −m| > δ) · P (|X −m| > δ)

= lim
n→∞

P (E | |X −m| ≤ δ) · (1− o(1)) + P (E | |X −m| > δ) · o(1)

= lim
n→∞

(P (E | X = m) + o(1)) · (1− o(1))

= lim
n→∞

P (E | X = m)

A to jest dokładnie to co chcieliśmy pokazać.
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Pytanie 9

Łańcuch Markowa. Nieprzywiedlność, okres stanu i okres łańcucha. Praw-
dopodobieństwa przejść pomiędzy stanami w nieprzywiedlnym i nieokre-
sowym łańcuchu Markowa. Stany powracające (dodatnie i zerowe) i chwi-
lowe. W każdym nieprzywiedlnym, skończonym łańcuchu Markowa ocze-
kiwany czas przejścia pomiędzy dwoma stanami jest skończony.

9.1 Definicja łańcucha Markowa

Definicja 9.1.1. Procesem stochastycznym nazywamy dowolny zbiór zmiennych losowych
{Xt : t ∈ T}. Zwykle t oznacza moment w czasie, a Xt jest stanem tego procesu w czasie t.
Zbiór stanów często oznaczany jest jako S.

Definicja 9.1.2. Proces jest skończony, jeśli zmienne Xt przyjmują skończenie wiele wartości.

Definicja 9.1.3. Proces jest dyskretny, jeśli zmienne Xt przyjmują wartości ze zbioru prze-
liczalnego.

Definicja 9.1.4. Proces jest z czasem dyskretnym, jeśli T jest przeliczalne (najczęściej
T = N).

Definicja 9.1.5. Łańcuchem Markowa nazywamy proces stochastyczny z czasem dyskret-
nym {Xt}t∈N dla którego

1. dla każdego t ≥ 0 oraz (a0, . . . , at) takiego, że P(
⋂t

i=0Xi = ai) > 0 zachodzi

P

(
Xt+1 = y |

t⋂
i=0

Xi = ai

)
= P(Xt+1 = y | Xt = at)

2. dla każdego t ≥ 0 i x, y ∈ S zachodzi

P(Xt+1 = x | Xt = y) = P(Xt = x | Xt−1 = y)

Właściwość 1. mówi nam, że aby dostać rozkład zmiennej Xt wystarczy, że znamy rozkład
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zmiennej Xt−1 tzn. łańcuch Markowa jest bez pamięci. Warto zauważyć, że nie oznacza to,
że Xt jest niezależne od Xt−2, Xt−3, . . . – jest, ale cała ta zależność jest zawarta w zależności
od stanu Xt−1.

Za właściwość 2. mówi nam, że bez znaczenia na czas, prawdopodobieństwo przejścia z okre-
ślonego stanu x do stanu y jest zawsze takie samo.

Warto zaznaczyć że niektóre źródła definiują łańcuchy Markowa jako procesy spełniające wy-
łącznie właściwość 1., a procesy spełniające 1. oraz 2. nazywają łańcuchami Markowa czasu
homogenicznego, jednak na probabilu dla uproszczenia terminologii używamy powyższej defi-
nicji.

Definicja 9.1.6. Oznaczamy dalej pij = P(Xt = j | Xt−1 = i).

Definicja 9.1.7. Macierzą przejścia łańcucha Markowa nazywamy macierz P zadaną współ-
czynnikami pij.

Definicja 9.1.8. pij(n) = P(Xn = j | X0 = i)

9.2 Nieprzywiedlność i okres stanu

Definicja 9.2.1. Dla i ∈ S definiujemy T (i) = {t ≥ 1 | pii(t) > 0}. Jest to zbiór takich t, że
jesteśmy w stanie dojść z i do i w t krokach.

Definicja 9.2.2. Okres stanu dla i ∈ S definiujemy jako o(i) = gcd(T (i))

Rysunek 9.1: Stan z ma okres 1

Definicja 9.2.3. Stan j jest osiągalny ze stanu i jeśli istnieje n ≥ 0 takie, że pij(n) > 0.
Zapisujemy i → j.

Definicja 9.2.4. Stany i oraz j są wzajemnie skomunikowane jeśli i jest osiągalne z j oraz
j jest osiągalne z i. Zapisujemy i ↔ j.

Lemat 9.2.1. Relacja skomunikowania jest relacją równoważności.

Dowód. Rozważamy trzy warunki bycia relacją równoważności

1. i ↔ i

Możemy dojść z i do i w 0 krokach – pij(0) = 1
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2. i ↔ j =⇒ j ↔ i

Koniunkcja jest przemienna, możemy zatem zamienić kolejność warunków w definicji.

3. i ↔ j ∧ j ↔ k =⇒ i ↔ k

Skoro i ↔ j to mamy n dla którego Pij(n) > 0.

Podobnie mamy m dla którego Pjk(m) > 0.

W takim razie pik(n+m) ≥ pij(n) · Pjk(m) > 0 zatem k jest osiągalne z i.

Analogicznie pokazujemy, że i jest osiągalne z k, czyli stany te są skomunikowane.

Dodatkowo w grafie skierowanym klasy równoważności relacji ↔ tworzą silnie spójne składowe.

Definicja 9.2.5. Łańcuch jest nieprzywiedlny (nieredukowalny) jeśli wszystkie stany są
parami skomunikowane. Wtedy jego graf skierowany jest silnie spójny.

Definicja 9.2.6. Stan i jest okresowy jeśli o(i) > 1, czyli jego okres jest większy od 1.
Łańcuch jest okresowy jeśli posiada co najmniej jeden stan okresowy. Stan lub łańcuch, który
nie jest okresowy nazywamy nieokresowym.

9.3 Okres nieprzywiedlnego łańcucha Markowa

Lemat 9.3.1. W nieprzywiedlnym łańcuchu Markowa wszystkie stany mają ten sam okres.

Dowód. Niech i, j ∈ S - dwa stany łańcucha.

Z nieprzywiedlności mamy:
∃m pij(m) > 0

∃l pji(l) > 0

Niech n ∈ T (j)

pii(m+ n+ l) ≥ pij(m) · pjj(n) · pji(l) > 0

pii(m+ l) ≥ pij(m) · pji(l) > 0

To znaczy chcemy dojść z i do i w m+ n+ l krokach, więc możemy iść z i do j, z j do j i z j

do i. W drugim przypadku pomijamy n kroków z j do j.

m+ n+ l ∈ T (i) =⇒ o(i) | m+ n+ l

m+ l ∈ T (i) =⇒ o(i) | m+ l

Mamy teraz o(i) | n, a wiec o(i) jest dzielnikiem każdego elementu T (j), a więc jest ≤ od jego
nwd, a więc o(i) ≤ o(j). Analogicznie dowodzimy w drugą stronę, otrzymując równość.
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9.4 Prawdopodobieństwa przejść pomiędzy stanami w nie-

przywiedlnym i nieokresowym łańcuchu Markowa

Lemat 9.4.1. Jeśli {Xt | t ∈ N} jest nieokresowym i nieprzywiedlnym łańcuchem Markowa,
to:

∀i,j∈S ∃n0 ∀n≥n0 pij(n) > 0

Dowód. Lemat Schura:

∀x⊂N+,gcd(x)=1 ∃m0 ∀m≥m0 ∃r≥1,x1,...,xr∈x,l1,...,lr∈N
∑
i∈[r]

lixi = m

Niech i, j ∈ S. Z lematu Schura mamy:

∃m0 ∀m≥m0 ∃r≥1,m1,...,mr∈T (j),l1,...,lr∈N
∑
i∈[r]

limi = m

pjj(m) ≥
∏
i∈[r]

pjj(limi) ≥
∏
i∈[r]

pjj(mi)
li > 0

Z kolei z nieprzywiedlności mamy:

i → j =⇒ ∃m1 pij(m1) > 0

Niech n0 = m0 +m1

∀n≥n0 pij(n) ≥ pij(m1)pjj(n−m1) > 0

9.5 Stany powracające i chwilowe

Definicja 9.5.1. Definiujemy piewszy czas pojawienia się w j jako:

Tj = min(n ∈ N | Xn = j)

T+
j = min(n ∈ N1 | Xn = j)

W drugim przypadku pomijamy stan początkowy n = 0.

Definicja 9.5.2. Definiujemy prawdopodobieństwo pierwszego spotkania w zadanym
momencie fij(n) jako

fij(n) = P(Xn = j ∧Xn−1 ̸= j . . . X1 ̸= j | X0 = i) = P(T+
j = n | X0 = i)
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Definicja 9.5.3. Definiujemy prawdopodobieństwo pierwszego spotkania fij jako

fij =
∞∑
n=1

fij(n) = P(T+
j < ∞ | X0 = i)

Definicja 9.5.4. Stan i jest powracający (rekurencyjny) jeśli fi,i = 1, a chwilowy jeśli
fi,i < 1.
Mówimy, że łańcuch jest rekurencyjny jeśli każdy jego stan jest rekurencyjny.

Definicja 9.5.5. Definiujemy czas pierwszego spotkania

Ti,j = min{n ∈ N1 | X0 = i ∧Xn = j}

dodatkowo

E[Ti,j] = E
[
T+
j | X0 = i

]
=

∞∑
n=1

nP(T+
j = n | X0 = i) =

∞∑
n=1

nfij(n)

Definicja 9.5.6. Stan powracający i jest dodatni jeśli E[Ti,i] < ∞, w przeciwnym wypadku
jest zerowy.

9.6 Własność nieprzywiedlnego, skończonego łańcucha Mar-

kowa

Twierdzenie 9.6.1. W skończonym, nieprzywiedlnym łańcuchu Markowa zachodzi

∀x,y∈S E[Tx,y] < ∞

Dowód. Nieprzywiedlność oraz skończoność dają nam

∃r>0,ε>0 ∀x,y∈S ∃j∈[r] px,y(j) > ε

Mimo tego, że linia ta może początkowo być trudna do przetworzenia, jest całkiem prosta.
Nieprzywiedlność mówi nam że dla każdego (x, y), y jest osiągalne z x, a więc ∃n px,y(n) > 0.
Nasze r to po prostu maksimum po tych n dla wszystkich par (x, y), a ε to minimum z wartości
px,y(n).

Następnie chcemy pokazać, że

P(T+
y > kr | X0 = x) ≤ P(T+

y > (k − 1)r | X0 = x)(1− ε)
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Dlaczego tak jest? Otóż wiemy, że dla każdej możliwej wartości z = X(k−1)r zachodzi

∃j∈[r] pz,y((k − 1)r + j) > ε

a więc z prawdopodobieństwem przynajmniej ε odwiedzimy y w następnych r krokach. W
takim razie, jeśli T+

y > (k − 1)r, to P(T+
y ≤ kr) ≥ ε, a więc prawdopodobieństwo tego, że nie

dojdziemy do y jest ograniczone od góry przez 1− ε, co daje nam naszą nierówność.

Następnie, poprzez prostą indukcję można pokazać, że

P(T+
y > kr | X0 = x) ≤ (1− ε)k

Teraz, przechodząc do finalnego dowodu i korzystając z 28.3.1

E[Tx,y] = E
[
T+
y | X0 = x

]
=

∞∑
t=0

P(T+
y > t | X0 = x)

≤
∞∑
k=0

rP(T+
y > kr | X0 = x)

≤ r
∞∑
k=0

(1− ε)k

< ∞
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Rozkład stacjonarny. Istnienie, unikalność oraz interpretacja.

10.1 Rozkład stacjonarny

Definicja 10.1.1. Rozkładem stacjonarnym nazywamy wektor π taki, że π = πP oraz∑
i∈S πi = 1

Intuicyjnie rozkład stacjonarny opisuje jak często asymptotycznie odwiedzamy każdy ze stanów
niezależnie od tego skąd zaczęliśmy. Rozkład stacjonarny nie zawsze istnieje - np. łańcuch na
liczbach naturalnych, taki, że pn,n+1 = 1 w oczywisty sposób nie ma rozkładu stacjonarnego.

Twierdzenie 10.1.1. Istnienie rozkładu stacjonarnego
Niech z ∈ S, πz = (πz,y)y∈S. Dodatkowo niech

Ez[A] := E[A | X0 = z]

Pz(A) := P(A | X0 = z)

πz,y := Ez[liczba wizyt w y przed pierwszym powrotem do z] =
∞∑
t=0

Pz(Xt = y ∧ T+
z > t)

Dla z ∈ S,Ez[T
+
z ] < ∞ zachodzi:

• πz = πzP

• π = πz

Ez [T
+
z ]

jest rozkładem stacjonarnym

Dowód. Druga część prosto wynika z pierwszej, ponieważ oczywiście z definicji πz,y mamy∑
y∈S

πz,y = Ez[T
+
z ]
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Pozostaje nam więc tylko udowodnić część pierwszą

∑
x∈S

πz,xpx,y =
∑
x∈S

∞∑
t=0

Pz(Xt = x ∧ T+
z > t)px,y

=
∞∑
t=0

Pz(Xt+1 = y ∧ T+
z ≥ t+ 1)

=
∞∑
t=1

Pz(Xt = y ∧ T+
z ≥ t)

= πz,y − Pz(X0 = y ∧ T+
z > 0) +

∞∑
t=1

Pz(Xt = y ∧ T+
z = t)

= πz,y − Pz(X0 = y) + Pz(XT+
z
= y)

= πz,y

Pz(X0 = y) = Pz(XT+
z
= y) ponieważ oba są indykatorami y = z.

Twierdzenie 10.1.2. Skończony, nieprzywiedlny łańcuch Markowa ma unikalny rozkład sta-
cjonarny

Dowód. Weźmy rozkłady stacjonarne π, ϕ. Ustalmy x ∈ S taki, że πx

ϕx
jest najmniejsze (możemy

to zrobić, ponieważ łańcuch jest skończony). Z definicji rozkładu stacjonarnego

πx =
∑
y∈S

πypy,x =
∑
y∈S

πy

ϕy

ϕypy,x ≥
∑
y∈S

πx

ϕx

ϕypy,x =
πx

ϕx

∑
y∈S

ϕypy,x =
πx

ϕx

ϕx = πx

To, że po obu stronach mamy to samo mówi nam, że powyższa nierówność to tak naprawdę
równość. W takim razie wiemy, że

∀y,py,x>0
πy

ϕy

=
πx

ϕx

Widzimy więc, że wszystkie stany z których da się bezpośrednio dojść do x mają taki sam iloraz
π do ϕ. Możemy następnie analogicznie pokazać, że wszystkie stany z którch da się dojść w
2, 3, . . . krokach do x mają taki sam iloraz. Ponieważ łańcuch jest nieprzywiedlny i skończony,
z każdego stanu da się dojść w skończonej liczbie kroków do x. W takim razie wszystkie stany
mają taki sam iloraz, a więc

π =
πx

ϕx

ϕ

A więc π = ϕ, bo
∑

i∈S πi =
∑

i∈S ϕi = 1

Twierdzenie 10.1.3. Każdy skończony, nieprzywiedlny łańcuch Markowa

1. Ma unikalny rozkład stacjonarny π = (πi)i∈S

2. ∀i∈S πi =
1

E[T+
i |X0=i]
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Dodatkowo, jeśli łańcuch jest nieokresowy

3. ∀i,j∈S limt→∞ pj,i(t) = πi

Dowód. Punkt 1. udowodniliśmy przed chwilą. Po chwili zastanowienia, punkt 2. prosto z niego
wynika. Dla danego i, z twierdzenia 10.1.1 wiemy, że istnieje rozkład stacjonarny π w którym

πi =

∑∞
t=0 P(Xt = i ∧ T+

i > t | X0 = i)

E
[
T+
i | X0 = i

] =
1

E
[
T+
i | X0 = i

]
Ponieważ rozkład stacjonarny jest unikalny, to jest to prawdziwe dla każdego i.
Za to do dowodu punktu 3. będziemy potrzebowali więcej narzędzi i można go znaleźć w
13.1.1.
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Norma całkowitego wahania rozkładów prawdopodobieństwa, własno-
ści normy, sprzęganie rozkładów prawdopodobieństwa. Związek między
normą a sprzęganiem

11.1 Norma całkowitego wahania

Definicja 11.1.1. Niech µ, ν będą rozkładami prawdopodobieństwa nad skończonym zbiorem
S. Normą całkowitego wahania (total variation distance) tych rozkładów nazywamy wartość

∥µ− ν∥TV = max
A⊆S

|µ (A)− ν (A)| .

Lemat 11.1.1. Niech µ, ν będą rozkładami prawdopodobieństwa nad skończonym zbiorem S.
Niech B = {x ∈ S : µ (x) ≥ ν (x)}. Zachodzi

∥µ− ν∥TV = µ (B)− ν (B) = ν (Bc)− µ (Bc) .

Dowód. Spróbujmy przekazać intuicję tego, czym jest norma całkowitego wahania. Poniżej
mamy wykres, na którym zaznaczone są rozkłady µ oraz ν oraz zbiory B i Bc

µ
νI

II

B Bc
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Wiemy, że pole pod µ = 1 oraz pole pod ν = 1. W takim razie, możemy zauważyć że pola I i II
są sobie wzajemnie równe. Dodatkowo, patrząc na definicję normy całkowitego wahania, można
prosto zauważyć, że jest ona równa polu I (bo B to zbiór w którym µ najbardziej dominuje
nad ν) oraz polu II (analogicznie). Prosto widzimy, że

Pole I = µ(B)− ν(B)

Pole II = ν(Bc)− µ(Bc)

Co kończy dowód

Lemat 11.1.2. Niech µ, ν będą rozkładami prawdopodobieństwa nad skończonym zbiorem S.
Zachodzi

∥µ− ν∥TV =
1

2

∑
x∈S

|µ (x)− ν (x)| .

Dowód. Z poprzedniego lematu dostajemy, że dla B = {x ∈ S : µ (x) ≥ ν (x)} jest

∥µ− ν∥TV =
1

2
(µ (B)− ν (B) + ν (Bc)− µ (Bc)) =

1

2

∑
x∈S

|µ (x)− ν (x)| .

11.2 Sprzęganie rozkładów prawdopodobieństwa

Definicja 11.2.1. Niech µ, ν będą rozkładami prawdopodobieństwa nad skończonym zbiorem
S. Sprzęganiem µ i ν nazywamy dowolną parę zmiennych losowych (X, Y ) taką, że X ma
rozkład µ, a Y ma rozkład ν. W szczególności te zmienne nie muszą być niezależne.

Lemat 11.2.1. Niech (X, Y ) będzie sprzęganiem µ i ν. Zachodzi

∥µ− ν∥TV ≤ P (X ̸= Y ) .

Ponadto istnieje sprzęganie dla którego zachodzi równość.

Dowód. Dla dowolnego A ⊆ S mamy

µ (A)− ν (A) = P (X ∈ A)− P (Y ∈ A) ≤ P (X ∈ A ∩ Y /∈ A) ≤ P (X ̸= Y ) .

Analogicznie ν (A)− µ (A) ≤ P (X ̸= Y ). To daje żądaną nierówność.

Teraz skonstruujemy sprzęganie spełniające równość. Niech B = {x ∈ S : µ (x) ≥ ν (x)}. Niech
p1 = µ (B)−ν (B), p2 = ν (Bc)−µ (Bc). Mamy p1 = p2 = ∥µ− ν∥TV . Niech p3 = 1−p1 = 1−p2.

Rzucamy monetą z prawdopodobieństwem orła p3. Jeśli wypadnie orzeł to ustalamy X = Y =

s, gdzie s wybieramy z S z rozkładem
(

1
p3
min (µ (s) , ν (s)) : s ∈ S

)
. Jeśli wypadnie reszka usta-
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lamy X = x i Y = y, gdzie x jest wybierany losowo z S z rozkładem
(

1
p1
max (µ (x)− ν (x) , 0) : x ∈ S

)
,

a y z rozkładem
(

1
p2
max (ν (x)− µ (x) , 0) : x ∈ S

)
. W przypadku reszki jedna zmienna przyj-

muje tylko te wartości, na których µ jest większe, a druga tylko te, na których ν jest większe.
Mamy więc P (X ̸= Y ) = 1 − p3 = ∥µ− ν∥TV , a (X, Y ) faktycznie jest sprzęganiem µ i ν –
zmienne mają odpowiednie rozkłady.
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Pytanie 12

Lemat o sprzęganiu łańcuchów Markowa, lemat o monotoniczności.

12.1 Sprzęganie łańcuchów Markowa

Będziemy rozważać łańcuch Markowa (Xt)t∈N (skończony, nieprzywiedlny, nieokresowy) o ma-
cierzy przejścia P , zbiorze stanów S i rozkładzie stacjonarnym (πx)x∈S. Przez P t (x, ·) ozna-
czamy rozkład Xt przy założeniu X0 = x.

Definicja 12.1.1. Definiujemy

∆x (t) =
∥∥P t (x, ·)− π

∥∥
TV

τx (ε) = min {t : ∆x (t) ≤ ε}

Mamy też maksima tych wartości:

∆(t) = max
x∈S

∆x (t)

τmix (ε) = max
x∈S

τx (ε)

Ostatnią z tych wartości nazywamy czasem mieszania łańcucha Markowa. Będziemy też (bez
większego powodu) oznaczać τmix = τmix

(
1
4

)
.

Definicja 12.1.2. Sprzęganiem łańcuchów Markowa X,Y o macierzy przejścia P i zbiorze
stanów S jest dowolny łańcuch Markowa (Zt = (Xt, Yt))t∈N na przestrzeni stanów S × S taki,
że

P (Xt+1 = x′ | Zt = (x, y)) = P (x, x′)

P (Yt+1 = y′ | Zt = (x, y)) = P (y, y′)

dla każdego t ≥ 0, x, y, x′, y′ ∈ S.

Sprzęgane łańcuchy to dwie równoległe kopie jednego procesu. Nie zawsze mają one te same
stany, ale też nie zawsze są niezależne. Nie ustalamy nic o stanach początkowych. Będą nas
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interesować takie sprzęgania, które sprowadzają obie kopie do tego samego stanu i potem je
tak utrzymują.

12.2 Lemat o sprzęganiu łańcuchów Markowa

Lemat 12.2.1. Niech ((Xt, Yt))t∈N będzie sprzęganiem łańcuchów (skończonych, nieprzywie-
dlnych, nieokresowych) z macierzą przejścia P i zbiorem stanów S. Niech T ∈ N i ε > 0 będą
takie, że dla każdego x, y ∈ S zachodzi

P (XT ̸= YT | X0 = x, Y0 = y) ≤ ε.

Wtedy czas mieszania łańcucha z macierzą P jest ograniczony:

∀x∈S ∆x (T ) ≤ ε

τmix (ε) ≤ T.

Dowód. Zauważmy, że sprzęganie spełnia założenia niezależnie od tego, w jaki sposób ustalimy
X0 i Y0. Ustalmy dowolne x ∈ S. Niech X0 = x i niech Y0 będzie wybrany losowo z rozkładu
stacjonarnego π. Wtedy Yt ma rozkład π dla każdego t.

Niech A ⊆ S. Mamy

P (XT ∈ A) ≥ P (YT ∈ A ∩XT = YT ) = 1− P (YT /∈ A ∪XT ̸= YT )

≥ 1− P (YT /∈ A)− P (XT ̸= YT ) ≥ P (YT ∈ A)− ε = π (A)− ε.

Analogicznie P (XT ∈ Ac) ≥ π (Ac)− ε, czyli P (XT ∈ A) ≤ π (A) + ε.

Mamy zatem
∀x∈S ∆x (T ) = max

A⊆S

∣∣P T (x,A)− π (A)
∣∣ ≤ ε,

a z tego wynika
τmix (ε) ≤ T.

12.3 Lemat o monotoniczności

Lemat 12.3.1 (O monotoniczności). Niech P będzie macierzą przejścia skończonego, nieprzy-
wiedlnego i nieokresowego łańcucha Markowa ze zbiorem stanów S i rozkładem stacjonarnym
π. Dla każdych t ≥ 0, x ∈ S zachodzi

∆x (t+ 1) ≤ ∆x (t) .
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Dowód. Ustalmy t ≥ 0 i x ∈ S. Niech (Xt, Yt) będzie sprzęganiem rozkładów P t (x, ·) i π

spełniającym P (Xt ̸= Yt) = ∆x (t) (przedtem pokazaliśmy, że istnieje sprzęganie, dla którego
ta równość zachodzi). Definiujemy (Xt+1, Yt+1) w następujący sposób: jeśli Xt = Yt, wykonu-
jemy krok łańcucha zgodnie z macierzą P (na obu współrzędnych taki sam), a w przeciwnym
wypadku wykonujemy dwa niezależne kroki. Zauważmy, że Yt+1 dalej ma rozkład π. Mamy

∆x (t) = P (Xt ̸= Yt) ≥ P (Xt+1 ̸= Yt+1) ≥
∥∥P t+1 (x, ·)− π

∥∥
TV

= ∆x (t+ 1) .
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Pytanie 13

Twierdzenie o geometrycznej zbieżności rozkładu stanu łańcucha do roz-
kładu stacjonarnego.

13.1 Twierdzenie o geometrycznej zbieżności

Twierdzenie 13.1.1 (O geometrycznej zbieżności). Niech P będzie macierzą przejścia skoń-
czonego, nieprzywiedlnego i nieokresowego łańcucha Markowa ze zbiorem stanów S i rozkładem
stacjonarnym π. Wtedy istnieją α ∈ (0, 1) i C > 0 takie, że

∀n∈N ∆(n) ≤ Cαn.

Dowód. Ustalmy r ≥ 1 takie, że dla każdych x, y ∈ S jest P r (x, y) > 0 (dla konkretnych
dwóch istnieje, bo łańcuch jest nieokresowy i nieprzywiedlny, a ze skończoności można wziąć
maksimum).

Niech my = minx∈S P
r (x, y) dla y ∈ S. Jest to najmniejsze z prawdopodobieństw, z jakimi

da się przejść do y krokiem macierzy P r. Niech m =
∑

y∈S my ≤ 1 (ta suma ogranicza z dołu
dowolny wiersz, a wiersz sumuje się do 1).

Niech ((Xt, Yt))t∈N będzie sprzęganiem łańcuchów o macierzy przejścia P r zadanym w nastę-
pujący sposób: Niech (Xt, Yt) = (x1, x2). Zakładamy, że jeżeli łańcuchy się zeszły, to już się nie
rozchodzą (czyli jeżeli Xt oraz Yt są równe, to Xt+1 i Yt+1 również będą równe). W przeciwnym
przypadku rzucamy monetą, na której orzeł wypada z prawdopodobieństem m:

• Jeżeli wypadnie orzeł, to Xt+1 = Yt+1 = x, gdzie x wybieramy losowo z rozkładem:(
1

m
my | y ∈ S

)

• Jeżeli wypadnie reszka, to Xt+1 = x′
1, Yt+1 = x′

2, gdzie x′
1 i x′

2 wybieramy kolejno z
rozkładami: (

1

1−m
(P r(x1, y)−my) | y ∈ S

)
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(
1

1−m
(P r(x2, y)−my) | y ∈ S

)
W ten sposób skonstruowaliśmy sprzęganie, dla którego zachodzi:

P(Xt+1 = Yt+1) =
∑
y∈S

P(Xt+1 = Yt+1 = y) ≥
∑
y∈S

m · my

m
= m

a z tego wynika P (Xt ̸= Yt) ≤ (1−m)t . Teraz mając zadane n = rt+ j dla j ∈ {0, . . . , r − 1}
możemy zapisać

∆x (n) ≤ ∆x (rt) =
∥∥P rt (x, ·)− π

∥∥
TV

≤ P (Xt ̸= Yt) ≤ (1−m)t = αrt ≤ Cαn,

gdzie położyliśmy α = (1−m)
1
r i C = α−r.
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Pytanie 14

Losowe spacery w grafie jako zastosowanie łańcuchów Markowa.

14.1 Losowe spacery w grafie

Definicja 14.1.1. Spacerem losowym na nieskierowanym grafie G nazywamy łańcuch Mar-
kowa, którego stany odpowiadają wierzchołkom grafu. Prawdopodobieństwo przejścia ze stanu
v do stanu u wynosi 1

deg(v) gdy (v, u) ∈ E i 0 w przeciwnym przypadku.

Twierdzenie 14.1.1 (Lemat 7.12 P&C). Spacer losowy na grafie G jest nieokresowy wtedy i
tylko wtedy gdy G nie jest dwudzielny

Dowód. ( =⇒ ) Jeśli G jest dwudzielny, to do każdego wierzchołka v można wrócić tylko po
parzystej liczbie kroków, bo co krok zmieniamy stronę, po której jesteśmy.

( ⇐= ) W niedwudzielnym G musi istnieć nieparzysty cykl. Niech v leży na tym cyklu. Z jednej
strony można wyjść do dowolnego sąsiada v i wrócić, co da pvv (2) > 0, a z drugiej można przejść
całym cyklem, czyli pvv (2k + 1) > 0. Zatem okres v (czyli całego spaceru) to 1.

Twierdzenie 14.1.2 (Lemat 7.13 P&C). Spacer losowy na spójnym, niedwudzielnym grafie
G posiada rozkład stacjonarny π̄ w którym πv =

deg(v)
2|E|

Dowód. Pokażemy, że tak zadane π̄ faktycznie jest rozkładem stacjonarnym. Mamy

∑
v∈V (G)

πv =
∑

v∈V (G)

d (v)

2|E|
=

1

2|E|
∑

v∈V (G)

d (v) = 1,

a więc faktycznie jest to rozkład. Mamy też

(πP )v =
∑

u∈V (G)

πu · Puv =
∑

u∈N(v)

d (u)

2|E|
· 1

d (u)
=

d (v)

2|E|
= πv,

gdzie drugie przejście to zastosowanie określenia macierzy P dla spaceru.
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Definicja 14.1.2. Czas pokrycia grafu G to chwila (indeks łańcucha Markowa), w której spacer
odwiedził już każdy wierzchołek. Taką zmienną losową oznaczamy CG.

Definicja 14.1.3. Zmienna losowa ruv określa liczbę kroków spaceru losowego przebiegającego
od wierzchołka u do wierzchołka v.

Lemat 14.1.1. Dla każdej krawędzi uv w grafie G zachodzi E [ruv] + E [rvu] ≤ 2|E|.

Dowód. Mając graf G będziemy tworzyć łańcuch Markowa na krawędziach skierowanych. Roz-
ważamy skierowany graf D, który jest grafem G, w którym każda krawędź została przedstawiona
jako dwie krawędzie skierowane. Stanem łańcucha będą krawędzie, a z zadanej krawędzi będzie
można przejść do krawędzi wychodzących z jej końca (z równym prawdopodobieństwem).

W takim łańcuchu rozkład jednostajny πuv =
1

2|EG| jest stacjonarny. Po pierwsze
∑

uv∈ED
πuv =∑

uv∈ED

1
2|EG| = 1, więc jest to rozkład. Mamy też

∑
w∈N(u)

πwu
1

d (u)
=

1

d (u)
· d (u)

2|EG|
=

1

2|EG|
= πuv,

gdzie uv jest pewną krawędzią w D. Z tego wynika, że rozkład jest stacjonarny.

Ograniczana wartość E [ruv] +E [rvu] jest oczekiwaną liczbą kroków w spacerze u → v → u. W
grafie D można patrzeć na spacer z krawędzi vu do vu. Idzie on tak samo jak przejście z u do v

i z powrotem do u, ale ma ustaloną krawędź, którą trzeba wrócić do u. Zatem będzie dłuższy
od zwykłego spaceru po wierzchołkach i mamy

E [ruv] + E [rvu] ≤ E
[
r(vu)(vu)

]
=

1

πvu

= 2|EG|

Twierdzenie 14.1.3 (Twierdzenie 7.15 P&C). Wartość oczekiwana czasu pokrycia grafu G =

(V,E) jest ograniczona od góry przez 2|E| (|V | − 1).

Dowód. Niech T będzie drzewem rozpinającym G. Przejdziemy po jego wierzchołkach w kolej-
ności DFSa. Niech v0, v1, . . . , v2|V |−2 będą kolejnymi wierzchołkami odwiedzonymi przez DFSa.
Oczekiwany czas pokrycia grafu jest ograniczony przez oczekiwany czas kolejnego odwiedzania
wierzchołków wypisanych w takiej kolejności. Zatem

E [CG] ≤
2|V |−3∑
i=0

E
[
rvivi+1

]
=
∑
xy∈T

E [rxy] + E [ryx] ≤ 2|E| · (|V | − 1) .
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Pytanie 15

Rozkład jednostajny: gęstość, dystrybuanta, momenty, funkcja tworząca
momentów, rozkład pod warunkiem, że wylosowano wartość poniżej usta-
lonego progu, wartość oczekiwana k-tej statystyki n niezależnych prób
zmiennych o rozkładzie jednostajnym.

15.1 Rozkład jednostajny

Definicja 15.1.1. Mówimy, że zmienna losowa X ma rozkład jednostajny na przedziale
[a, b] jeśli gęstość tej zmiennej zadana jest przez funkcję

f(x) =

 1
b−a

gdy x ∈ [a, b]

0 wpp.
x

y

1
b−a

a b

Łatwo można zauważyć, że dystrybuanta takiej zmiennej wynosi

F (x) =


0 gdy x < a

x−a
b−a

gdy a ≤ x ≤ b

1 gdy x > b x

y

1

a b

Twierdzenie 15.1.1. Niech X ma rozkład jednostajny na przedziale [a, b]. Wtedy

E[X] =
a+ b

2
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Dowód.

E[X] =

∫ ∞

−∞
xf(x) dx

=

∫ b

a

x
1

b− a
dx

=
1

b− a

∫ b

a

x dx

=
1

b− a

[
x2

2

]b
a

=
1

b− a

b2 − a2

2

=
1

b− a

(b− a)(b+ a)

2

=
a+ b

2

Twierdzenie 15.1.2. Niech X ma rozkład jednostajny na przedziale [a, b]. Wtedy

Var[X] =
(b− a)2

12

Dowód.

E
[
X2
]
=

∫ b

a

x2 1

b− a
dx

=
1

b− a

[
x3

3

]b
a

=
1

b− a

b3 − a3

3

=
1

b− a

(b− a)(a2 + ab+ b2)

3

=
a2 + ab+ b2

3

Var[X] = E
[
X2
]
− E[X]2 =

a2 + ab+ b2

3
−
(
a+ b

2

)2

=
(b− a)2

12

Twierdzenie 15.1.3. Niech X ma rozkład jednostajny na przedziale [a, b]. Wtedy

MX(t) =

 etb−eta

t(b−a)
dla t ̸= 0

1 dla t = 0
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Twierdzenie 15.1.4. Niech X ma rozkład jednostajny na przedziale [a, b]. Wtedy dla dowol-
nych a ≤ c ≤ d ≤ b

P (X ≤ c | X ≤ d) =
c− a

d− a

Dowód.

P (X ≤ c ∩X ≤ d)

P (X ≤ d)
=

P (X ≤ c)

P (X ≤ d)
=

c− a

b− a
· b− a

d− a
=

c− a

d− a
.

Twierdzenie 15.1.5. Niech X1, . . . , Xn będą niezależne i wszystkie mają rozkład jednostajny
na [0, 1]. Ponadto, niech Y1, . . . , Yn będą tymi samymi wartościami, posortowanymi rosnąco.
Wtedy

E[Yk] =
k

n+ 1

Dowód. Modyfikujemy lekko problem i zamiast wybierać n punktów z odcinka będziemy wy-
bierać n + 1 punktów z okręgu o obwodzie 1. Nazywamy je P0, . . . , Pn. W ten sposób Xi jest
odległością zgodnie ze wskazówkami zegara między punktami P0, Pi, natomiast Yk jest odległo-
ścią od P0 do k-tego punktu zgodnie ze wskazówkami zegara.

Mamy n+1 łuków między punktami i, ze względu na symetrię, oczekiwana długość łuku między
dwoma sąsiednimi punktami wynosi 1

n+1
.

W takim razie oczekiwana wartość Yk to oczekiwana łączna długość k sąsiednich łuków, która
wynosi k

n+1
.
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Pytanie 16

Rozkład wykładniczy. Gęstość, dystrybuanta, momenty, funkcja tworząca
momentów, własność bez pamięci, rozkład minimum n niezależnych prób.
Funkcja Gamma i rozkład Gamma. Związek z rozkładem wykładniczym.

16.1 Rozkład wykładniczy

Definicja 16.1.1. Rozkładem wykładniczym z parametrem λ nazywamy rozkład zadany
gęstością

f(x) =

λe−λx dla x ≥ 0

0 wpp.

x

y

Intuicyjnie widzimy, że im λ jest mniejsze, tym bardziej ten wykres się "wypłaszcza".

Dystrybuanta takiej zmiennej wynosi

F (x) =

1− e−λx dla x ≥ 0

0 wpp.

x

y

dodatkowo definiujemy

G(x) = P (X > x) = 1− F (x) =

e−λx dla x ≥ 0

0 wpp.

Lemat 16.1.1. Dla X ∼ Exp(a) oraz Y = X
b

zachodzi

Y ∼ Exp(ab)
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Dowód.
P(Y ≤ y) = P(X ≤ by) = 1− e−aby

Twierdzenie 16.1.1. Dla X ∼ Exp(λ) zachodzi

E[X] =
1

λ

E
[
X2
]
=

2

λ2

Var[X] =
1

λ2

Dowód.

E[X] =

∫ ∞

−∞
tf(t) dt

=

∫ ∞

0

tλe−λt dt

= −
∫ ∞

0

t
(
−λe−λt

)
dt

= −
[
te−λt

]∞
0
+

∫ ∞

0

e−λt dt

= 0 +

[
−1

λ
e−λt

]∞
0

=
1

λ

E
[
X2
]
=

∫ ∞

0

t2λe−λt dt

= −
∫ ∞

0

t2
(
−λe−λt

)
dt

= −
[
t2e−λt

]∞
0
+

∫ ∞

0

2te−λt dt

= 0 +
2

λ

∫ ∞

0

tλe−λt dt

= 0 +
2

λ
· 1
λ

=
2

λ2

Var[X] = E
[
X2
]
− E[X]2 =

1

λ2
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Alternatywnie, dla uproszczenia można to udowodnić wyłącznie dla λ = 1 a potem z 16.1.1
rozszerzyć na dowolne λ.

Twierdzenie 16.1.2 (Lemat 8.4 P&C). Rozkład wykładniczy jest bez pamięci, tzn. dla
X ∼ Exp(λ), s, t ∈ R+ zachodzi

P (X > s+ t | X > t) = P (X > s)

Dowód.

P (X > s+ t | X > t) =
P (X > s+ t)

P (X > t)

=
1− P (X ≤ s+ t)

1− P (X ≤ t)

=
exp(−λ(s+ t))

exp(−λt)

= e−λs = P (X > s)

Jest to bardzo przydatna własność, bowiem sprawia, że możemy „resetować” zmienną o której
wiemy, że ma większą wartość niż ustalona.

Twierdzenie 16.1.3 (MGF). Niech X ma rozkład wykładniczy z parametrem λ. Wtedy dla
t < λ

MX(t) =
λ

λ− t

Dowód.

MX(t) = E
[
etX
]

=

∫ ∞

0

etx · f(x) dx

=

∫ ∞

0

etx · λe−λx dx

= λ

∫ ∞

0

e−x·(λ−t) dx

=
λ

λ− t

Twierdzenie 16.1.4 (Lemat 8.5 P&C). Jeśli X1, . . . , Xn są niezależnymi zmiennymi loso-
wymi spełniającymi Xi ∼ Exp(λi), to

min(X1, . . . , Xn) ∼ Exp

(
n∑

i=1

λi

)

52



MPI 53

oraz
P(Xi = min(X1, . . . , Xn)) =

λi∑n
j=1 λj

Dowód. Przeprowadzimy dowód dla n = 2, który później prostą indukcją można rozszerzyć na
n > 2.

P(min(X1, X2) > x) = P(X1 > x ∧X2 > x)

= P(X1 > x) · P(X2 > x)

= e−λ1x · e−λ2x

= e−(λ1+λ2)x

a więc min(X1, X2) ∼ Exp(λ1 + λ2). Teraz pozostaje pokazać, że:

P(X1 ≤ X2) =
λ1

λ1 + λ2

Zatem liczymy:

P(X1 ≤ X2) =

∫ ∞

x2=−∞

∫ x2

x1=−∞
fX1X2(x1, x2) dx1dx2 =∫ ∞

x2=−∞
fX2(x2)

∫ x2

x1=−∞
fX1(x1) dx1dx2 =∫ ∞

x2=0

λ2e
−λ2x2

∫ x2

x1=0

λ1e
−λ1x1 dx1dx2 =

λ1λ2

∫ ∞

x2=0

e−λ2x2

∫ x2

x1=0

e−λ1x1 dx1dx2 =

λ1λ2

∫ ∞

x2=0

e−λ2x2

(∣∣∣x2

0

−1

λ1

e−λ1x1

)
dx2 =

λ1λ2

∫ ∞

x2=0

e−λ2x2

(
−1

λ1

e−λ1x2 − −1

λ1

e0
)

dx2 =

λ1λ2

∫ ∞

x2=0

e−λ2x2
−1

λ1

(
e−λ1x2 − 1

)
dx2 =

−λ2

∫ ∞

x2=0

e−λ2x2
(
e−λ1x2 − 1

)
dx2 =

−λ2

∫ ∞

x2=0

e−λ2x2−λ1x2 − e−λ2x2 dx2 =

−λ2

∫ ∞

x2=0

e−x2(λ2+λ1) − e−λ2x2 dx2 =

−λ2

(∫ ∞

x2=0

e−x2(λ2+λ1) dx2 −
∫ ∞

x2=0

e−λ2x2 dx2

)
=
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−λ2

((∣∣∣∞
x2=0

−1

λ1 + λ2

e−x2(λ1+λ2)

)
−
(∣∣∣∞

x2=0

−1

λ2

e−λ2x2

))
=

−λ2

(
1

λ1 + λ2

− 1

λ2

)
=

−λ2

(
λ2

λ2 · (λ1 + λ2)
− λ1 + λ2

λ2 · (λ1 + λ2)

)
=

(−λ2) ·
−λ1

λ2 · (λ1 + λ2)
=

λ1

λ1 + λ2

16.2 Funkcja Gamma i rozkład Gamma

Definicja 16.2.1. Funkcją gamma nazywamy funkcję:

Γ(a) =

∫ ∞

0

xae−xdx

x
=

∫ ∞

0

xa−1e−x dx

dla a > 0. Powyższe dwie notacje są równoważne, my będziemy korzystać z tej pierwszej.

Parę faktów o funkcji gamma:

Fakt 16.2.1. Γ(1) = 1

Dowód.
Γ(1) =

∫ ∞

0

xe−xdx

x
=

∫ ∞

0

e−x dx =
[
−e−x

]∞
0

= 1

Fakt 16.2.2. ∀a>0Γ(a+ 1) = aΓ(a)

Dowód.

Γ(a+ 1) =

∫ ∞

0

xae−x dx =
[
−xae−x

]∞
0
+ a

∫ ∞

0

xa−1e−x dx = 0 + aΓ(a) = aΓ(a)

Fakt 16.2.3. ∀n≥1Γ(n) = (n− 1)!

Wynika to bezpośrednio z poprzedniego faktu.

Definicja 16.2.2. Mówimy, że ciągła zmienna losowa ma Rozkład Gamma z parametrem
(a, 1), jeżeli jej funkcja gęstości jest równa:

f(x) =
1

Γ(a)
xae−x 1

x
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Wtedy: ∫ ∞

0

1

Γ(a)
xae−xdx

x
=

1

Γ(a)

∫ ∞

0

xae−xdx

x
=

1

Γ(a)
· Γ(a) = 1

Zatem jest to poprawny rozkład.

Definicja 16.2.3. Dla X ∼ Gamma(a, 1) oraz λ > 0 definiujemy Y ∼ Gamma(a, λ) jako

Y =
X

λ

Twierdzenie 16.2.1. Funkcja gęstości Y ∼ Gamma(a, λ) jest równa

f(x) =
1

Γ(a)
(λx)ae−λx 1

x

Dowód. Niech X ∼ Gamma(a, 1), Y = X
λ
. Liczymy gęstość

fY (y) = fX(x) ·
∣∣∣∣dxdy

∣∣∣∣ = 1

Γ(a)
(λy)ae−λy 1

λy
λ =

1

Γ(a)
(λy)ae−λy 1

y

Fakt 16.2.4.
Gamma(1, 1) ≡ Exp(1)

Gamma(1, λ) ≡ Exp(λ)

Twierdzenie 16.2.2. Niech X1, . . . , Xn - niezależne zmienne losowe o rozkładzie wykładni-
czym z parametrem λ. Wtedy

X1 + . . .+Xn ∼ Gamma(n, λ)

Dowód. Skorzystamy z twierdzenia 28.4.1. Policzymy funkcję tworzącą dla sumy Xi oraz dla
Y ∼ Gamma(n, λ).

MXi
(t) = E

[
etXi

]
=

∫ ∞

0

etxλe−λx dx =
λ

λ− t

X =
∑
i∈[n]

Xi =⇒ MX(t) =
∏
i∈[n]

MXi
(t) =

(
λ

λ− t

)n

MY (t) = E
[
etY
]
=

∫ ∞

0

etY
1

Γ(n)
(λy)n

dy

y

=
λn

(λ− t)n

∫ ∞

0

1

Γ(n)
e−(λ−t)y((λ− t)y)n

dy

y

=

(
λ

λ− t

)n
Γ(n)

Γ(n)
=

(
λ

λ− t

)n
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Obie funkcje tworzące są równe, więc zmienne X i Y mają ten sam rozkład.
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Pytanie 17

(8.3.2). Problem kul i urn ze wzmocnionym feedbackiem.

17.1 Kule i urny z feedbackiem

Jak zwykle, zanim zaczniemy to pokażemy pomocniczy lemat:

Lemat 17.1.1. Niech X będzie dowolną zmienną losową ze skończoną wartością oczekiwaną,
tj. E[X] ∈ R. Wtedy

P (X < ∞) = 1

Dowód. Korzystamy z nierówności Markowa

P (X ≥ n) ≤ E[X]

n

Zatem
lim
n→∞

P (X ≥ n) ≤ lim
n→∞

E[X]

n
= 0

Kule i urny jakie są każdy widzi. Rozważmy sobie jednak zabawny model, w którym mamy
tylko dwie urny ale z takim twistem, że im więcej kul jest w urnie, tym większa szansa na to,
że wrzucimy tam kolejną kulę.

Konkretniej - jeśli w pierwszej urnie jest x kul a w drugiej y to prawdopodobieństwo, że kolejna
kula trafi do pierwszej urny wynosi

xp

xp + yp

a do drugiej
yp

xp + yp

dla ustalonego p.

Będziemy się zajmować p > 1 tzn. więcej kul dostaje cięższa urna.
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Twierdzenie 17.1.1. Dla dowolnego p > 1 oraz dowolnych warunków początkowych, z praw-
dopodobieństwem 1 od pewnego momentu kule wpadają tylko do jednej urny.

Dowód. Przyjmijmy, że w obu urnach na początku jest po jednej kuli, uprości to dowód, a
rozumowanie pozostaje takie same.

Rozważmy inny, choć podobny, proces. Każda urna dostaje własny, niezależny licznik, który
odlicza czas do przyjścia kolejnej kuli do tej konkretnej urny.

Jeśli w pierwszej urnie jest x kul to czas oczekiwania na kolejną wynosi Tx, które ma rozkład
wykładniczy z parametrem xp.

Podobnie dla drugiej urny – jeśli jest w niej y kul to mamy zmienną Uy z parametrem yp.

Zauważamy teraz fajną rzecz – prawdopodobieństwo, że kolejna kula ląduje w pierwszej urnie
wynosi dokładnie

xp

xp + yp

a w drugiej
yp

xp + yp

Czyli nasz nowy proces jest taki sam jak oryginalny, cóż za zbieg okoliczności.

Definiujemy czasy nasycenia – opisują one po jakim czasie liczba kul w urnach jest dowolnie
duża.

F1 =
∞∑
i=1

Ti

F2 =
∞∑
i=1

Ui

Możemy tak zrobić, bo E[Ti] = E[Ui] =
1
ip

, a ponieważ p > 1 to E[F1] oraz E[F2] są skończone.

Tutaj należy uważać ale książka Wam tego nie powie. Otóż a priori nie wiemy, że jeśli zmienna
ma skończoną oczekiwaną to z prawdopodobieństwem 1 zmienna przyjmuje skończoną wartość.
My się powołujemy na lemat 17.1.1 dzięki czemu wiemy, że wartości F1, F2 są skończone.

Co więcej, z prawdopodobieństwem 1 są różne.

Bez straty ogólności, przyjmijmy, że F2 > F1. Oznacza to, że dla pewnego n

n∑
i=1

Ui < F1 <

n+1∑
i=1

Ui

a to z kolei oznacza, że dla wystarczająco dużych m

n∑
i=1

Ui <
m∑
i=1

Ti <
n+1∑
i=1

Ui
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W takim razie, dla odpowiednio dużych m pierwsza urna zawiera m kul a druga urna zawiera
jedynie n kul, czyli z prawdopodobieństwem 1 druga urna utknęła na posiadaniu n kul, a to
jest to co chcieliśmy pokazać.
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Pytanie 18

(8.4). Proces Poissona. Definicja. Prawdopodobieństwo pojawienia się n
zdarzeń w ustalonym odcinku czasowym długości t (Twierdzenia 8.7 i
8.8).

18.1 Proces Poissona

18.1.1 Definicja

Definicja 18.1.1. Stochastycznym procesem liczącym nazywamy proces stochastyczny

{N(t), | t ≥ 0}

spełniający

1. N(t) ∈ N0

2. ∀s<tN(s) ≤ N(t)

Intuicyjnie: N(t) mówi ile jakichś zdarzeń zaszło od momentu rozpoczęcia procesu do chwili t,
a dla s ≤ t liczba zdarzeń które zaszły w przedziale czasu (s, t] to N(t)−N(s)

Definicja 18.1.2. Procesem Poissona z parametrem λ nazywamy stochastyczny proces
liczący {N(t) | t ∈ R, t ≥ 0} taki, że:

1. N(0) = 0

2. Proces ma stacjonarne i niezależne przyrosty, tzn.

2a. Stacjonarność: ∀s,t≥0 zmienne N(s) oraz N(s+ t)−N(t) mają taki sam rozkład

2b. Niezależność: ∀t1<t2≤t3<t4 zmienne N(t2)−N(t1) oraz N(t4)−N(t3) są niezależne

3. Prawdopodobieństwo jednego zdarzenia w małym przedziale długości t zbiega do λ

lim
t→0

P(N(t) = 1)

t
= λ



MPI 61

4. Prawdopodobieństwo więcej niż jednego zdarzenia w małym przedziale zbiega do zera

lim
t→0

P(N(t) > 1)

t
= 0

18.1.2 Związek z rozkładem Poissona

Powyższa definicja nie jest jedyną możliwą definicją procesu Poissona. Okazuje się, że możemy
skorzystać też z nieco wygodniejszej definicji bez warunków 3. i 4., ale za to korzystającej z
rozkładu Poissona.

Pokażemy teraz dwa lematy, które dadzą nam równoważność między dwoma definicjami.

Twierdzenie 18.1.1 (Twierdzenie 8.7 P&C). Niech {N(t) | t ≥ 0} będzie procesem Poissona
z parametrem λ. Wtedy dla dowolnego t ≥ 0 oraz n ∈ N

Pn(t) := P (N(t) = n) = e−λt (λt)
n

n!

Dowód. Zaczynamy od policzenia P0(t); dowód będzie indukcyjny.

Zauważmy, że z niezależności przyrostów mamy

P0(t+ h) = P(N(t+ h) = 0)

= P(N(t) = 0 ∧N(t+ h)−N(t) = 0)

= P(N(t) = 0)P(N(t+ h)−N(t) = 0)

= P(N(t) = 0)P(N(h) = 0)

= P0(t) P0(h)

Robimy więc pierwszą rzecz, która nam przychodzi do głowy tj. liczymy pochodną P0(t), a co.

P ′
0(t) = lim

h→0

P0(t+ h)− P0(t)

h

= lim
h→0

P0(t) ·
P0(h)− 1

h

= lim
h→0

P0(t) ·
(1− P (N(h) = 1)− P (N(h) > 1))− 1

h

= lim
h→0

(
P0(t) ·

(
−P (N(h) = 1)

h
− P (N(h) > 1)

h

))
= P0(t) ·

(
− lim

h→0

P (N(h) = 1)

h
− lim

h→0

P (N(h) > 1)

h

)
= P0(t) · (−λ− 0)

= −λP0(t)

Wyniki poszczególnych limesów biorą się z własności 4 i 5 procesu Poissona.
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Mamy zatem równanie różniczkowe

P ′
0(t) = −λP0(t)

P ′
0(t)

P0(t)
= −λ

Całkujemy po t i dostajemy
lnP0(t) = −λt+ C

P0(t) = e−λt+C

Ponieważ P0(0) = 1 to C = 0, czyli P0(t) = e−λt. Tym samym bazę indukcji mamy udowod-
nioną.

Podobnie zabawny motyw dzieje się gdy obliczamy kolejne Pn(t). Na początek zaobserwujmy
jednak jedną rzecz.

Fakt 18.1.1.

Pn(t+ h) =
n∑

k=0

Pn−k(t) · Pk(h)

Dowód. Jeśli wiemy, że w czasie t+ h zaistniało n zdarzeń, to wiemy, że jakieś k (być może 0)
zdarzeń musiało zaistnieć w czasie h, a więc n− k zdarzeń zaistniało w czasie t. Aby policzyć
prawdopodobieństwo takiej sytuacji wystarczy wymnożyć 2 takie prawdopodobieństwa (bo
niezależność) a z racji tego że kolejne składniki sumy opisują zdarzenia które są rozłączne to
zsumowanie jest legalne.

Korzystając z wyżej wymienionego faktu, mamy:

Pn(t+ h) =
n∑

k=0

Pn−k(t) · Pk(h)

= Pn(t) · P0(h) + Pn−1(t) · P1(h) +
n∑

k=2

Pn−k(t) · P (N(h) = k)

Zrobiliśmy tu bardzo sprytną rzecz – mianowicie rozbiliśmy sumę na trzy części tak, aby przy
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liczeniu pochodnych wszystko nam się ładnie zwinęło.

P ′
n(t) = lim

h→0

Pn(t+ h)− Pn(t)

h

= lim
h→0

(
Pn(t) · P0(h) + Pn−1(t) · P1(h) +

∑n
k=2(Pn−k(t) · P (N(h) = k))− Pn(t)

h

)
= lim

h→0

(
Pn(t) · (P0(h)− 1) + Pn−1(t) · P (N(h) = 1) +

∑n
k=2(Pn−k(t) · P (N(h) = k))

h

)
= lim

h→0

(
Pn(t) · (P0(h)− 1)

h
+

Pn−1(t) · P (N(h) = 1)

h
+

n∑
k=2

Pn−k(t) ·
P (N(h) = k)

h

)

= Pn(t) lim
h→0

(
P0(h)− 1

h

)
+ Pn−1(t) lim

h→0

(
P (N(h) = 1)

h

)
+

n∑
k=2

Pn−k(t) · lim
h→0

(
P (N(h) = k)

h

)
= Pn(t) lim

h→0

(
(1− P(N(h) = 1)− P(N(h) > 1))− 1

h

)
+ Pn−1(t) · λ+

n∑
k=2

Pn−k(t) · 0

= Pn(t)

(
− lim

h→0

P(N(h) = 1)

h
− lim

h→0

P(N(h) > 1)

h

)
+ λPn−1(t)

= −λPn(t) + λPn−1(t)

Znowu dostajemy równanie różniczkowe

P ′
n(t) = −λPn(t) + λPn−1(t)

P ′
n(t) + λPn(t) = λPn−1(t)

eλt(P ′
n(t) + λPn(t)) = λeλtPn−1(t)

eλtP ′
n(t) + eλtλPn(t) = λeλtPn−1(t)

d

dt

(
eλt · Pn(t)

)
= λeλtPn−1(t)

I z założenia indukcyjnego:

λeλtPn−1(t) = λeλt · e−λt · (λt)
n−1

(n− 1)!
=

λn · tn−1

(n− 1)!

Całkujemy obustronnie:

∫
d

dt

(
eλtPn(t)

)
dt = eλtPn(t) + C1

∫
λn · tn−1

(n− 1)!
dt =

λn

(n− 1)!
·
∫

tn−1 dt =
λn

(n− 1)!
· t

n

n
+ C2 =

λntn

n!
+ C2

Definiujemy C = C2 − C1 by musieć mniej myśleć o stałych:
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eλtPn(t) + C1 =
λntn

n!
+ C2

eλtPn(t) =
λntn

n!
+ C2 − C1

eλtPn(t) =
λntn

n!
+ C

Pn(t) = e−λtλ
ntn

n!
+ Ce−λt

Wiemy, że Pn(0) = 0, zatem C = 0. W takim razie:

Pn(t) = e−λtλ
ntn

n!
= e−λt (λt)

n

n!

Twierdzenie 18.1.2 (Twierdzenie 8.8 P&C). Niech {N(t) | t ≥ 0} będzie procesem stocha-
stycznym liczącym takim, że

1. N(0) = 0

2. Proces ma niezależne przyrosty

3. ∀t,s P(N(s+ t)−N(t) = n) = e−λs (λs)
n

n!

Wtedy jest to proces Poissona z parametrem λ.

Dowód. Pokazujemy co następuje z definicji 18.1.2

1. N(0) = 0 z założeń

2. Niezależność i stacjonarność przyrostów również bezpośrednio z założeń

3.

lim
t→0

P(N(t) = 1)

t
= lim

t→0

e−λs λt
1!

t
= lim

t→0
λe−λt = λ

4.

lim
t→0

P(N(t) ≥ 2)

t
= lim

t→0

1− P(N(t) = 0)− P(N(t) = 1)

t

= lim
t→0

1− e−λt − e−λt λt
1!

t

= lim
t→0

1− e−λt

t
− lim

t→0
λe−λt

= lim
t→0

λe−λt

1
− λ = λ− λ = 0
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(8.4.1). Proces Poissona. Rozkład czasów pomiędzy zdarzeniami (Twier-
dzenia 8.9, 8.10 i 8.11).

19.1 Międzyczasy

Niech X1 to czas pierwszego zdarzenia, a Xi dla i ≥ 2 to czas pomiędzy (i− 1)-szym a i-tym
zdarzeniem - dalej nazywane międzyczasami.

Twierdzenie 19.1.1 (Twierdzenia 8.9 i 8.10 P&C). Niech {N(t) | t ≥ 0} będzie procesem
Poissona z parametrem λ. Wtedy międzyczasy są niezależne i mają rozkład wykładniczy z
parametrem λ.

Dowód. Pierwsze pokażmy, że jest to prawda dla X1

P(X1 > t) = P(N(t) = 0) = e−λt

Jest to dopełnienie dystrybuanty zmiennej o rozkładzie wykładniczym z parametrem λ.

A teraz pokażmy, że jest to prawda dla Xi, i > 1

P(Xi > ti | (X0, X1, . . . , Xi−1) = (t0, t1, . . . , ti−1)) = P

(
N

(
i∑
1

tj

)
−N

(
i−1∑
1

tj

)
= 0

)
= P(N(ti) = 0) = e−λti

A więc Xi też ma rozkład wykładniczy z parametrem λ, i jest niezależne od wartości poprzed-
nich międzyczasów.

Twierdzenie 19.1.2 (Twierdzenie 8.11 P&C). Niech {N(t) | t ≥ 0} będzie stochastycznym
procesem zliczającym takim, że

1. N(0) = 0

2. Międzyczasy są niezależne i wszystkie mają rozkład Exp(λ)
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Wtedy proces ten jest procesem Poissona z parametrem λ

Dowód. Pokażemy kolejne własności z definicji 18.1.2

1. N(0) = 0 z definicji

2a. Stacjonarność: aby pokazać, że rozkład N(s + t) − N(s) jest taki sam jak rozkład N(t)

zrobimy tę samą sztuczkę co przed chwilą - w chwili s resetujemy ostatnią zmienną.
Wszystko teraz dzieje się na przedziale długości t bez żadnych zależności od tego co było
wcześniej, zatem rozkład liczby zdarzeń musi być taki sam jak rozkład N(t)

2b. Niezależność: weźmy dowolne dwa przedziały [b, a] ∩ [d, c] = ∅, przy czym d > a

W chwili d „toczy się” pewna zmienna X licząca czas między dwoma zdarzeniami. Możemy
ją „zresetować” albo bardziej formalnie warunkować się po tym, że X > t gdzie t jest
czasem od poprzedniego zdarzenia do chwili d.

Rozkład X pod warunkiem, że X > t jest wykładniczy z parametrem λ i jest niezależny
od tego co się działo przed d, zatem wszystko co zarejestrujemy na przedziale [d, c] jest
niezależne od zdarzeń na przedziale [b, a].

3. Niech X1 będzie zmienną opisującą czas do pierwszego zdarzenia, a X2 od pierwszego
zdarzenia do drugiego. Widzimy, że P (N(t) = 1) = P (X1 < t ∧X1 +X2 > t)

Ponieważ X1, X2 mają rozkład wykładniczy a X1+X2 nie jest specjalnie ładnym tworem,
to będziemy chcieli poradzić sobie nieco inaczej.

Skorzystamy zatem z twierdzenia o trzech funkcjach aby udowodnić zadaną granicę.

Nasze oszacowania będą wyglądały następująco:

P (X1 < t ∧X2 > t) ≤ P (N(t) = 1) ≤ P (X1 < t)

Ograniczenie od dołu jest na pewno mniej prawdopodobnym zdarzeniem – jeśli X1 <

t ∧ X2 > t to na pewno N(t) = 1), ale nie uwzględnia ono sytuacji kiedy X1, X2 <

t ∧X1 +X2 > t.

Podobnie oszacowanie górne – warunek jest konieczny, ale nie wystarczający, zatem zaj-
dzie z większym prawdopodobieństwem.

Możemy zatem policzyć granice ograniczeń.
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Ograniczenie dolne:

lim
t→0

P (X1 < t ∧X2 > t)

t
= lim

t→0

P (X1 < t) · P (X2 > t)

t

= lim
t→0

(1− exp(−λt)) exp(−λt)

t

= lim
t→0

exp(−λt)− exp(−2λt)

t
=

[
0

0

]
= lim

t→0
−λ exp(−λx) + 2λ exp(−2λx)

= −λ+ 2λ = λ

Ograniczenie górne:

lim
t→0

P (X1 < t)

t
= lim

t→0

1− exp(−λt)

t
=

[
0

0

]
= lim

t→0
λ exp(−λt) = λ

Obie granice wyszły nam λ, zatem limt→0
P (N(t)=1)

t
= λ. Fajnie.

4. Ostatni warunek szacujemy niemal identycznie jak poprzedni.
Podobnie zauważamy, że 0 ≤ P (N(t) > 1) ≤ P (X1 < t ∧X2 < t) – to, że oba czasy są
mniejsze niż t nie oznacza jeszcze, że ich suma również taka jest, zatem jest to warunek
konieczny, ale nie wystarczający.

lim
t→0

P(X1 < t ∧X2 < t)

t
= lim

t→0

P(X1 < t) P(X2 < t)

t

= lim
t→0

(1− exp(−λt))(1− exp(−λt))

t

= lim
t→0

1 + exp(−2λt)− 2 exp(−λt)

t
=

[
0

0

]
= lim

t→0
−2λ exp(−2λt) + 2λ exp(−λt)

= −2λ+ 2λ = 0

Wyszła nam granica jaką chcieliśmy, a więc z twierdzenia o trzech funkcjach

lim
t→0

P(N(t) > 1)

t
= 0

co kończy dowód.
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Pytanie 20

(8.4.2). Scalanie i rozdzielanie procesów Poissona (Twierdzenia 8.12 i
8.13).

20.1 Scalanie i rozdzielanie procesów Poissona

Definicja 20.1.1. Mówimy, że procesy Poissona {N1(t), | t ≥ 0}, {N2(t), | t ≥ 0} są nieza-
leżne jeśli ∀x,y N1(x) i N2(y) są niezależne.

20.1.1 Scalanie

Ta prostsza część.

Twierdzenie 20.1.1 (Twierdzenie 8.12 P&C). Niech N1, N2 będą niezależnymi procesami Po-
issona z parametrami λ1, λ2. Wtedy N(t) = N1(t)+N2(t) jest procesem Poissona z parametrem
λ1 + λ2 a ponadto każde zdarzenie procesu N przyszło z procesu N1 z prawdopodobieństwem

λ1

λ1+λ2

Dowód. Pierwszy warunek mamy za darmo. Żeby pokazać niezależność przyrostów, musimy
zauważyć tylko że dla t1 < t2 < t3 < t4 mamy:

N(t2)−N(t1) = N1(t2)−N1(t1) +N2(t2)−N2(t1)

N(t4)−N(t3) = N1(t4)−N1(t3) +N2(t4)−N2(t3)

a N1 i N2 są niezależne z założenia.

Zauważamy, że skoro N1(t), N2(t) miały rozkład Poissona, to N1(t)+N2(t) również ma rozkład
Poissona, tyle, że z parametrem λ1 + λ2, zatem otrzymujemy proces Poissona z parametrem
λ1 + λ2.

Druga część tezy wynika wprost z tego, że czasy między zdarzeniami maja rozkłady wykład-
nicze.
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20.1.2 Rozdzielanie

Ta smutniejsza część.

Twierdzenie 20.1.2 (Twierdzenie 8.13 P&C). Niech N będzie procesem Poissona z para-
metrem λ. Każde zdarzenie jest niezależnie typu 1 z prawdopodobieństwem p oraz typu 2 z
prawdopodobieństwem 1− p.

Wtedy zdarzenia typu 1 tworzą proces Poissona N1 z parametrem λp a typu 2 proces Poissona
N2 z parametrem λ(1− p). Ponadto, te dwa procesy są niezależne.

Dowód. Niezależność i stacjonarność dziedziczymy z N , tak samo N1(0) = 0. Policzymy zatem

P (N1(t) = k) =
∞∑
j=k

P (N1(t) = k | N(t) = j) · P (N(t) = j)

=
∞∑
j=k

(
j

k

)
pk · (1− p)j−k · e−λt · (λt)

j

j!

= e−λpt · (λpt)
k

k!
· e−λ(1−p)t ·

∞∑
j=k

(λt(1− p))j−k

(j − k)!

= e−λpt · (λpt)
k

k!
· e−λ(1−p)t · eλ(1−p)t

= e−λpt · (λpt)
k

k!

Dostaliśmy rozkład Poissona z parametrem λpt, czyli N1 jest procesem Poissona z parametrem
λpt. Tak samo pokazujemy N2.

Pozostaje pokazać niezależność tych procesów. Najpierw pokazujemy, że N1(t) oraz N2(t) są
niezależne.

P (N1(t) = n ∧N2(t) = m) = P (N(t) = n+m ∧N2(t) = m)

=
e−λt · (λt)n+m

(n+m)!
·
(
n+m

m

)
pn · (1− p)m

=
e−λt · (λt)n · (λt)m

n! ·m!
· pn · (1− p)m

=
e−λpt · (λpt)n

n!
· e

−λ(1−p)t · (λ(1− p)t)m

m!

= P (N1(t) = n) · P (N2(t) = m)

Wypadałoby jeszcze pokazać, że dla dowolnych t, u N1(t) oraz N2(u) są niezależne. Ponieważ
rozumowanie jest analogiczne, to załóżmy, że t < u.

Zauważamy bardzo odkrywczą rzecz, mianowicie N2(u) = N2(t)+(N2(u)−N2(t)) Pokazaliśmy
już, że N1(t) oraz N2(t) są niezależne, więc wystarczy pokazać, że N1(t) oraz N2(u) − N2(t)

też są niezależne. A tak jest, dlatego, że oryginalny N był procesem Poissona i rozdzielanie
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robiliśmy niezależnie, więc to ile zdarzeń z przedziału (t, u) wpadło do N2 jest niezależne od
N1(t).
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Pytanie 21

(8.4.3). Warunkowe czasy pojawiania się zdarzeń w procesie Poissona
(Twierdzenie 8.14).

21.1 Warunkowe czasy pojawiania się zdarzeń w procesie

Poissona

Lemat 21.1.1. Niech X1 będzie pierwszym międzyczasem procesu Poissona N z parametrem
λ. Zmienna X1 | N (t) = 1 ma rozkład jednostajny na [0, t].

Dowód.

P (X1 < s | N (t) = 1) =
P (X1 < s ∩N (t) = 1)

P (N (t) = 1)
=

P (N (s) = 1) · P (N (t)−N (s) = 0)

P (N (t) = 1)

=
e−λsλs · e−λ(t−s)

e−λtλt
=

s

t
.

Twierdzenie 21.1.1 (Twierdzenie 8.14 P&C). Niech {N (t) : t ≥ 0} będzie procesem Poissona
z parametrem λ. Niech Ti będzie czasem przyjścia i-tego zdarzenia. Przy warunku N (t) = n

rozkład (T1, . . . , Tn) jest taki sam jak sort (X1, . . . , Xn), gdzie zmienne X1, . . . , Xn mają rozkład
jednostajny na [0, t] i są niezależne.

Dowód. Oznaczmy (Y1, . . . , Yn) = sort (X1, . . . , Xn). Niech (i1, . . . , in) będzie permutacją [n].
Zauważmy, że zdarzenia postaci

Xi1 ≤ Xi2 ≤ . . . ≤ Xin ∩Xi1 ≤ s1 ∩ . . . ∩Xin ≤ sn

są rozłączne dla różnych permutacji (z dokładnością do zbioru miary 0 – może być tak, że dwie
permutacje pasują do naszej sytuacji, gdy dwie zmienne przyjęły tą samą wartość). Do tego
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wszystkie są równie prawdopodobne. Zatem mamy

P ((Y1, . . . , Yn) ≤ (s1, . . . , sn)) =
∑

(i1,...,in)∈Sn

P (Xi1 ≤ . . . ≤ Xin ∩Xi1 ≤ s1 ∩ . . . ∩Xin ≤ sn)

= n!P (X1 ≤ . . . ≤ Xn ∩ (X1, . . . , Xn) ≤ (s1, . . . , sn)) = n!

∫ s1

u1=0

. . .

∫ sn

un=un−1

(
1

t

)n

dun . . . du1

=
n!

tn

∫ s1

u1=0

. . .

∫ sn

un=un−1

dun . . . du1.

Teraz musimy policzyć odpowiednią wartość dla czasów przyjścia. Niech Zi oznacza i-ty mię-
dzyczas. Mamy

P ((T1, . . . , Tn) ≤ (s1, . . . , sn) ∩N (t) = n)

= P

(
Z1 ≤ s1 ∩ Z2 ≤ s2 − Z1 ∩ . . . ∩ Zn ≤ sn −

n−1∑
j=1

Zj ∩ Zn+1 > t−
n∑

j=1

Zj

)

=

∫ s1

z1=0

. . .

∫ sn−
∑n−1

j=1 zj

zn=0

∫ ∞

zn+1=t−
∑n

j=1 zj

λn+1e−λ
∑n+1

j=1 zj dzn+1 . . . dz1

= λne−λt

∫ s1

z1=0

. . .

∫ sn−
∑n−1

j=1 zj

zn=0

dzn . . . dz1 = λne−λt

∫ s1

u1=0

. . .

∫ sn

un=un−1

dun . . . du1,

gdzie trzecie przejście jest policzeniem najbardziej wewnętrznej całki (wychodzi λne−λt co jest
stałą względem pozostałych całek, więc wyciągamy to na przód), a później podstawiamy ui =∑i

j=1 zj (całkujemy funkcję stałą, więc znaczenie ma tak naprawdę tylko długość przedziału).

Wiemy, że P (N (t) = n) = e−λt(λt)n

n!
, więc prawdopodobieństwo warunkowe będzie wynosiło:

P((T1, . . . , Tn) ≤ (s1, . . . , sn) | N(t) = n) =
λne−λt

∫ s1
u1=0

. . .
∫ sn
un=un−1

dun . . . du1

e−λt(λt)n

n!

=
n!

tn

∫ s1

u1=0

. . .

∫ sn

un=un−1

dun . . . du1
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Naturalny proces losowy motywujący gęstość rozkładu normalnego. Roz-
kład normalny. Własności. Funkcja tworząca.

22.1 Standardowy rozkład normalny

22.1.1 Wyprowadzenie

Rozważmy sobie rozkład na R2 o następujących własnościach:

• gęstość wokół każdego punktu zależy jedynie od odległości od środka układu (w szcze-
gólności rotacja nie zmienia rozkładu).

• wartości współrzędnych x i y są od siebie niezależne.

• ten rozkład jest ciągły.

Okazuje się, że istnieje tylko jeden taki rozkład (z dokładnością do stałej), nazywamy go stan-
dardowym rozkładem normalnym. Oznaczamy go przez Z ∼ N(0, 1).

Zgodnie z definicją, gęstość zależy jedynie od odległości punktu od środka układu współrzęd-
nych. Możemy więc to zapisać jako:

f((x, y)) = f(r) = f
(√

x2 + y2
)
= g(x)h(y) = g(x)g(y)

Ostatnie przekształcenie wynika z tego, że nasza gęstość nie zależy od rotacji, więc możemy
obrócić wszystko o 90 stopni. Dodatkowo, dla punktu (r, 0) równanie przyjmie postać:

f((r, 0)) = g(r)g(0)

gdzie g(0) jest stałą. Z tego powodu możemy wstępnie założyć, że f = g a potem całość
odpowiednio przeskalować. Tak więc teraz mamy:

f
(√

x2 + y2
)
= f(x)f(y)
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Niech:
h(x) = f

(√
x
)

Wtedy:
h(x2) = f(x)

h(x2 + y2) = h(x2)h(y2)

h(x+ y) = h(x)h(y)

Z ostatniego punktu można przez indkucję pokazać, że ∀n∈N∀x1,...,xn∈Rh(x1 + . . . + xn) =

h(x1) . . . h(xn) Niech h(1) = b. Korzystając z poprzedniego faktu mamy, że ∀n∈Nh(n) = bn.

Teraz chcemy udowodnić to samo dla liczb wymiernych:

h

(
p

q
+ . . .+

p

q

)
= h(p) = bp = h

(
p

q

)q

Gdzie na początku mamy dokładnie q ułamków p
q

w funkcji h. Przekształcając ostatnią równość
otrzymujemy:

h

(
p

q

)
= b

p
q

Na koniec chcemy udowodnić to samo dla liczb rzeczywistych (co na wykładzie chyba pominę-
liśmy). Z MFI pamiętamy, że każdą liczbę rzeczywistą możemy przybliżyć jakimś ciągiem liczb
wymiernych, a bardziej formalnie:

∀x∈R∃qnx = lim
n→∞

qn

Gdzie qn jest jakimś ciągiem liczb wymiernym. Z połączenia tego faktu i założenia o ciągłości
funkcji h otrzymamy:

h(x) = h
(
lim
n→∞

qn

)
= lim

n→∞
h(qn) = lim

n→∞
bqn = blimn→∞ qn = bx

Ustalmy:
b = ec =⇒ h(x) = ecx

Teraz podstawiamy to do naszej funkcji gęstości, uwzględniamy skalowanie i otrzymujemy:

f(z) = a · ecx2

Gdzie c < 0.

Przyjmijmy c = −1
2
. Teraz chcemy znaleźć stałą a. Oczywiście chcemy, żeby pole pod naszą
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funkcją wynosiło 1, więc wystarczy obliczyć odpowiednią całkę. Całki:∫ ∞

−∞
e−

z2

2 dz

nie jesteśmy w stanie ładnie rozwiązać, więc posłużymy się takim trikiem:∫ ∞

−∞
e−

z2

2 dz ·
∫ ∞

−∞
e−

z2

2 dz =

∫ ∞

−∞

∫ ∞

−∞
e−

x2+y2

2 dx dy

=

∫ 2π

0

∫ ∞

0

e−
r2

2 · e dr dθ

=

∫ 2π

0

∫ ∞

0

e−u du dθ

=

∫ 2π

0

1 dθ = 2π

Gdzie kolejno druga i trzecia równość to przejście na współrzędne biegunowe, oraz podstawienie
u = r2

2
(dlatego przyjęliśmy akurat c = −1

2
). Dalej mamy:∫ ∞

−∞
e−

z2

2 dz =
√
2π =⇒ a =

1√
2π

f(z) =
1√
2π

e−
z2

2

x

y

0.1

0.2

0.3

Funkcja gęstości prawdopodobieństwa standardowego rozkładu normalnego wygląda jak dzban
dzwon.

22.1.2 Właściwości

Twierdzenie 22.1.1. Wartość oczekiwana standardowego rozkładu normalnego wynosi 0, wa-
riancja wynosi 1.

Dowód. Wartość oczekiwana wynosi 0, ponieważ standardowy rozkład normalny jest syme-
tryczny wobec prostej OY Wariancja:

Var[Z] = E
[
Z2
]
− E[Z]2 = E

[
Z2
]
=

ponieważ E[Z] = 0

=
1√
2π

∫ z

−∞
t2e−t2/2dt =

=
1√
2π

∫ z

−∞
(t)(te−t2/2)dt =
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całkowanie przez części

− 1√
2π

te−t2/2|∞−∞ +
1√
2π

∫ ∞

−∞
e−t2/2dt = 1

Ponieważ pierwszy wyraz jest równy 0 a drugi jest to dystrybuanta na od −∞ do ∞ więc
wynosi ona 1.

Definicja 22.1.1. Dystrybuantę standardowego rozkładu normalnego oznaczamy jako Φ, gdzie:

Φ(z) =
1√
2π

∫ z

−∞
e−

t2

2 dt

Oraz:
Φ(−z) = 1− Φ(z)

Ta całka generalnie nie jest do policzenia, jeżeli trzeba skorzystać z dystrybuanty to są do tego
specjalne tabele wartości

22.2 Uogólniony rozkład normalny

Definicja 22.2.1. Dla Z ∼ N(0, 1) definiujemy (uogólniony) rozkład normalny X ∼ N(µ, σ2)

jako
X = µ+ σZ

Twierdzenie 22.2.1. Dla X ∼ N(µ, σ2) zachodzi

• E[X] = µ

• Var[X] = σ2

• FX(x) = Φ(x−µ
σ

)

• fX(x) =
1

σ
√
2π
e−

(x−µ)2

2σ2

Dowód. Ponieważ zmienna losowa X z N(µ, σ2) ma ten sam rozkład co µ+ σZ mamy że

E[X] = E[µ+ σZ] = µ+ σE[Z] = µ

Var[X] = Var[σZ + µ] = σ2Var[Z] = σ2

FX(x) = P(X ≤ x) = P

(
X − µ

σ
≤ x− µ

σ

)
= P

(
Z ≤ x− µ

σ

)
= Φ

(
x− µ

σ

)

fX(x) = (FX(x))
′ =

(
Φ

(
x− µ

σ

))′

=
1

σ

(
1√
2π

∫ x

−∞
e−

( t−µ
σ )

2

2 dt

)′

=
1

σ
√
2π

e−
(x−µ)2

2σ2
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Twierdzenie 22.2.2. Funkcja tworząca momemty rozkładu normalnego N(µ, σ2) wynosi

MX(t) = e
t2σ2

2
+µt

Dowód.

MX(t) = E[etX ]

=
1√
2πσ

∫ ∞

−∞
etxe−

(x−µ)2

2σ2 dx

=
1√
2πσ

∫ ∞

−∞
exp

(
−x2 − 2µx+ µ2 − 2σ2tx

2σ2

)
dx

=
1√
2πσ

∫ ∞

−∞
exp

(
−x2 − 2(µ+ σ2t)x+ (µ+ σ2t)2 − (µ+ σ2t)2 + µ2

2σ2

)
dx

= exp

(
(µ+ σ2t)2 − µ2

2σ2

)∫ ∞

−∞

1√
2πσ

e−
(x−(µ+σ2t))2

2σ2 dx︸ ︷︷ ︸
1

= exp

(
µ2 + 2µσ2t+ σ4t2 − µ2

2σ2

)
= eµt+

t2σ2

2

Całka w 3 linii od dołu jest równa 1, bo jest to całka po gęstości rozkładu N(µ+ σ2t, σ2).

Twierdzenie 22.2.3. Niech X ∼ N(µ1, σ
2
1), Y ∼ N(µ2, σ

2
2) to niezależne zmienne losowe.

Wtedy X + Y ∼ N(µ1 + µ2, σ
2
1 + σ2

2).

Dowód.

MX+Y (t) = (MX(t))(MY (t)) =

(
e

t2σ2
1

2
+µ1t

)(
e

t2σ2
2

2
+µ2t

)
=

= e
t2(σ2

1+σ2
2)

2
+t(µ1+µ2)

Podobnie możemy pokazać, że dla niezależnych X1 ∼ N(0, σ2
1), X2 ∼ N(0, σ2

2) dostajemy
X1 +X2 ∼ N(0, σ2

1 + σ2
2) oraz X1 −X2 ∼ N(0, σ2

1 + σ2
2).
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Pytanie 23

(9.3). Centralne Twierdzenie Graniczne. Dowód. Warianty mocniejszych
wypowiedzi.

23.1 Centralne Twierdzenie Graniczne

23.1.1 Podstawowa wersja

Intuicyjnie: Centralne Twierdzenie Graniczne mówi, że jak mamy niezależne zmienne losowe
o takim samym rozkładzie, to dla liczby prób zbiegającej do nieskończoności rozkład średniej
arytmetycznej tych wylosowanych wartości będzie zbiegać do rozkładu normalnego. Twierdze-
nie to uzasadnia występowanie w naturze rozkładu normalnego.

Definicja 23.1.1. Ciąg dystrybuant F1, F2, ... zbiega w dystrybuancie do dystrybuanty F , co
oznaczamy jako Fn → F , jeśli dla każdego a ∈ R w którym F jest ciągła zachodzi:

lim
n→∞

Fn(a) = F (a)

Twierdzenie 23.1.1 (Centralne Twierdzenie Graniczne). Niech {Xi}i∈N będą niezależnymi
zmiennymi losowymi o takim samym rozkładzie, wartości oczekiwanej µ i wariancji σ2. Niech
X̃n = 1

n

∑n
i=1 Xi. Wówczas dla dowolnych a, b

lim
n→∞

P

a ≤
X̃n − E

[
X̃n

]
√

Var
[
X̃n

] ≤ b

 = Φ(b)− Φ(a)

Dowód. Pierwsze, przekształćmy sobie trochę nasz cel

E
[
X̃n

]
= µ

Var
[
X̃n

]
= Var

[
1

n

n∑
i=1

Xi

]
=

1

n2
Var

[
n∑

i=1

Xi

]
=

1

n2

n∑
i=1

Var[Xi] =
1

n2
nσ2 =

σ2

n
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A więc

lim
n→∞

P

a ≤
X̃n − E

[
X̃n

]
√

Var
[
X̃n

] ≤ b

 = lim
n→∞

P

(
a ≤ X̃n − µ

σ
·
√
n ≤ b

)

Dalej, aby dowieść CTG, będziemy musieli przytoczyć pomocne twierdzonko, którego (mamy
nadzieję) nikt nie będzie musiał dowodzić:

Twierdzenie 23.1.2 (Lévy-Cramér). Niech {Yi}i∈N będzie sekwencją zmiennych losowych,
gdzie Yi ma dystrybuantę Fi i funkcję tworzącą momenty Mi. Niech Y będzie zmienną losową
o dystrybuancie F i funkcji tworzącej momenty M . Jeżeli dla każdego t zachodzi:

lim
n→∞

Mn(t) = M(t)

to dla każdego t takiego, że F jest ciągła w t zachodzi

lim
n→∞

Fn(t) = F (t)

Dowód. Mitzenmacher przytacza to twierdzenie bez dowodu; na wykładzie go również nie było,
a więc i my udowodnimy je poprzez założenie go jako aksjomat (haha).

Przystępujemy teraz do dowodzenia CTG.

Definiujemy Zi =
Xi−µ

σ
. Wówczas Zi są niezależnymi zmiennymi losowymi oraz

E[Zi] = E
[
Xi − µ

σ

]
=

1

σ
· (E[Xi]− E[µ]) =

1

σ
· (µ− µ) = 0

Var[Zi] = Var

[
Xi − µ

σ

]
=

1

σ2
· (Var[Xi − µ]) =

1

σ2
· (Var[Xi]− Var[µ]) =

1

σ2
·
(
σ2 − 0

)
= 1

Var[Zi] = E
[
Z2

i

]
− E[Zi]

2 =⇒ E
[
Z2

i

]
= Var[Zi] + E[Zi]

2 = 1 + 02 = 1

Ponadto mamy, że:

X̃n − µ

σ
·
√
n =

∑n
i=1

Xi

n
− µ

σ
·
√
n =

∑n
i=1

Xi−µ
n

σ
·
√
n =

√
n

n

n∑
i=1

Xi − µ

σ
=

∑n
i=1 Zi√
n

Żeby zastosować teraz przywołane przez nas twierdzenie Levy’ego i tego drugiego musimy
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pokazać, że funkcja tworząca momenty zmiennych losowych postaci

Yn =

∑n
i=1 Zi√
n

zbiega do funkcji tworzącej momenty zmiennej losowej o standardowym rozkładzie normalnym.
Po zastosowaniu tego twierdzenia dostalibyśmy już tezę Centralnego Twierdzenia Granicznego.

W takim razie, chcemy pokazać

lim
n→∞

MYn(t) = lim
n→∞

E
[
e
t
∑n

i=1 Zi√
n

]
= e

t2

2

Niech MZi
(t) = E

[
etZi
]

będzie funkcją tworzącą momenty zmiennej Zi. Zauważamy, że wówczas
funkcja tworząca momenty zmiennej losowej Zi√

n
wynosi

M Zi√
n

(t) = E
[
e
t· Zi√

n

]
= MZi

(
t√
n

)
Ponieważ Zi są niezależne i mają ten sam rozkład mamy

MYn(t) = M∑n
i=1

Zi√
n

(t) =

(
M Zi√

n

(t)

)n

=

(
MZi

(
t√
n

))n

Teraz wykonujemy magiczne założenie. Zdefiniujmy sobie, for no reason at all, funkcję L,
taką że

L(t) = lnMZi
(t)

Dodatkowo, również bez jakiejkolwiek przyczyny, policzmy sobie pierwszą i drugą pochodną
L(0).

Zacznijmy od trywialnych obserwacji:

MZi
(0) = 1 =⇒ L(0) = 0

L′(0) = (lnMZi
(0))′ =

1

MZi
(0)

·M ′
Zi
(0) =

M ′
Zi
(0)

MZi
(0)

=
E[Zi]

1
= E[Zi] = 0

L′′(0) =
MZi

(0)M ′′
Zi
(0)− (M ′

Zi
(0))2

(MZi
(0))2

=
M ′′

Zi
(0)− 0

1
= E

[
Z2

i

]
= 1

Przypomnijmy, że chcieliśmy pokazać, że

lim
n→∞

MYn(t) = lim
n→∞

(
MZi

(
t√
n

))n

= e
t2

2
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po zlogarytmowaniu stronami

lim
n→∞

nL

(
t√
n

)
=

t2

2

Pytanie teraz co musimy zrobić by wykazać, że ta granica tyle wynosi.

Jak wszyscy wiemy, kiedy nie wiadomo jak policzyć granicę, to liczymy ją L’Hôpitalem. Za-
piszmy więc sobie ten limit tak, byśmy mogli użyć tego twierdzenia (czyli żeby pojawił się
symbol nieoznaczony 0

0
).

lim
n→∞

L
(

t√
n

)
n−1

No i lecimy z pochodnymi!

lim
n→∞

L
(

t√
n

)
n−1

=

[
0

0

]

= lim
n→∞

−1
2
L′
(

t√
n

)
tn− 3

2

−n−2

= lim
n→∞

L′
(

t√
n

)
t

2n− 1
2

=

[
0

0

]

= lim
n→∞

−1
2
L′′
(

t√
n

)
t2n− 3

2

−1
2
2n− 3

2

= lim
n→∞

t2 · L′′
(

t√
n

)
2

= lim
n→∞

t2 · 1
2

=
t2

2

I w sumie to mieliśmy dowieść. Ale fajnie.

23.1.2 Warianty

Istnieją różne warianty CTG, które mają swoje zastosowania w różnych sytuacjach. Poniżej
podajemy wypowiedzi dwóch takich wariantów.

W pierwszym wariancie usuwamy warunek na to, że wszystkie zmienne Xi muszą mieć taki
sam rozkład, ale musimy za to dodać dwa dodatkowe warunki.
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Twierdzenie 23.1.3. Niech {Xi}i∈N będzie ciągiem niezależnych zmiennych losowych speł-
niających E [Xi] = µi i Var[Xi] = σ2

i . Niech zachodzi

1. ∃M>0 ∀i∈N P (|Xi| < M) = 1

2. limn→∞
∑n

i=1 σ
2
i = +∞.

Wówczas dla dowolnych a, b zachodzi

lim
n→∞

P

(
a ≤

∑n
i=1 (Xi − µi)√∑n

i=1 σ
2
i

≤ b

)
= Φ(b)− Φ(a)

Za to w drugim wariancie mając dodakową informację o trzecim momencie, możemy wyznaczyć
prędkość zbiegania do rozkładu normalnego

Twierdzenie 23.1.4 (Berry-Esséen). Istnieje taka stała C, że dla każdego ciągu niezależnych
zmiennych losowych {Xi}i∈N o tym samym rozkładzie ze skończoną wartością oczekiwaną µ i
wariancją σ2 oraz dla ρ = E

[
|Xi − µ|3

]
< ∞ i X̃n = 1

n

∑n
i=1 Xi zachodzi

∣∣∣∣∣P
(
X̃n − µ

σ√
n

≤ a

)
− Φ (a)

∣∣∣∣∣ ≤ C · ρ

σ3
√
n
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Wprowadzenie siły dwóch wyborów

Pytania 24-26 wszystkie są związane z siłą dwóch wyborów i wymagają wypowiedzi tych samych
twierdzeń oraz modelu eksperymentu. Dodatkowo, częściowo używają tych samych oznaczeń
oraz lematów. Aby uniknąć powtarzania tych segmentów, są one wszystkie obecne tutaj.

24.1 Wprowadzenie modelu eksperymentu

Rozważmy wariant standardowego eksperymentu z kulami i urnami. Rzucamy n kul sekwen-
cyjnie do n urn i dla każdej kuli symulujemy dwa rzuty. Kula trafia do tej urny z dwóch
wylosowanych która jest mniej wypełniona, a remisy rozsrzygamy dowolnie. Okazuje się, że
znacząco zmienia to rozkład max(X1, . . . , Xn), co pokazuje następujące twierdzenie

Twierdzenie 24.1.1. W opisanym powyżej modelu ∀α≥1 ∃n0 ∀n≥n0 zachodzi

P

(
ln lnn

ln 2
−Oα(1) ≤ max(X1, . . . , Xn) ≤

ln lnn

ln 2
+Oα(1)

)
≥ 1− 1

nα

lub równoważnie

P(log2 lnn−Oα(1) ≤ max(X1, . . . , Xn) ≤ log2 lnn+Oα(1)) ≥ 1− 1

nα

Dodatkowo, jeśli symulujemy d rzutów zamiast dwóch, w powyższym wzorze zamiast ln 2 jest
obecne ln d i musimy zamienić Oα(1) na jakieś Od,α(1). Widzimy, że nie zmienia to bardzo
naszych ograniczeń, a dowody tych wariantów są bardzo podobne, a więc dla uproszczenia
nasze rozumowanie będziemy przeprowadzać dla d = 2.

24.2 Lematy pomocnicze

Lemat 24.2.1. Dla Z ∼ Bin(n, p) zachodzi

P(Z ≥ 2np) ≤ e−
np
3

P

(
Z ≤ 1

2
np

)
≤ e−

np
8

Dowód. Pierwsza nierównośc wynika wprost z punktu 2. 4.1.2 z δ = 1, a druga z punktu 2.



MPI Wprowadzenie siły dwóch wyborów

28.5.1 z δ = 1
2
.

E[Z] = np

P(Z ≥ 2np) = P(Z ≥ (1 + δ)E[Z]) ≤ e−
1
3
E[Z]δ2 = e−

np
3

P

(
Z ≤ 1

2
np

)
= P(Z ≤ (1− δ)E[Z]) ≤ e−

1
2
E[Z]δ2 = e−

np
8

Lemat 24.2.2. Niech X1, . . . , Xn to zmienne losowe, Y1, . . . , Yn to binarne zmienne losowe, Yi =

fi(X1, . . . , Xi) (jest wyznaczona przez X1, . . . , Xi) oraz Z ∼ Bin(n, p) jest niezależna od po-
przednich zmiennych. Jeśli dla każdego i ∈ [n] oraz (x1, . . . , xi−1) takiego, że P((X1, . . . , Xi−1) =

(x1, . . . , xi−1)) > 0 zachodzi

P(Yi = 1 | (X1, . . . , Xi−1) = (x1, . . . , xi−1)) ≤ p

to

P

(
n∑

i=1

Yi > k

)
≤ P(Z > k)

Dowód. (dla n = 3, dla wyższych n analogicznie)

P(Y1 + Y2 + Y3 > k) ≤ P(Z1 + Y2 + Y3 > k)

=
∑

x1

P(Z1 + Y2 + Y3 > k | X1 = x1) · P(X1 = x1)

≤
∑

x1

P(Z1 + Z2 + Y3 > k | X1 = x1) · P(X1 = x1)

=
∑

(x1,x2)
P(Z1 + Z2 + Y3 > k | (X1, X2) = (x1, x2))

· P(X2 = x2 | X1 = x1) · P(X1 = x1)

≤
∑

(x1,x2)
P(Z1 + Z2 + Z3 > k | (X1, X2) = (x1, x2))

· P(X2 = x2 | X1 = x1) · P(X1 = x1)

=
∑

(x1,x2)
P(Z1 + Z2 + Z3 > k)

· P(X2 = x2 | X1 = x1) · P(X1 = x1)

= P(Z1 + Z2 + Z3 > k) ·
∑

(x1,x2)
P(X2 = x2 | X1 = x1) P(X1 = x1)

= P(Z1 + Z2 + Z3 > k)

Lemat 24.2.3. (Lemat dualny dla 24.2.2) Niech X1, . . . , Xn to zmienne losowe, Y1, . . . , Yn

to binarne zmienne losowe, Yi = fi(X1, . . . , Xi) (jest wyznaczona przez X1, . . . , Xi) oraz Z ∼
Bin(n, p) jest niezależna od poprzednich zmiennych. Jeśli dla każdego i ∈ [n] oraz (x1, . . . , xi−1)
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takiego, że P((X1, . . . , Xi−1) = (x1, . . . , xi−1)) > 0 zachodzi

P(Yi = 1 | (X1, . . . , Xi−1) = (x1, . . . , xi−1)) ≥ p

to

P

(
n∑

i=1

Yi > k

)
≥ P(Z > k)

a więc też

P

(
n∑

i=1

Yi < k

)
≤ P(Z < k)

Dowód. Tak samo jak w poprzednim lemacie.

24.3 Oznaczenia

Do dowodów ograniczenia górnego przez iterację ograniczeń oraz ograniczenia dolnego przyda-
dzą nam się funkcje pomocnicze. Dla t ∈ [n] niech

• h(t) to wysokość t-tej kuli, czyli liczba kul w urnie, w której wylądowała t-ta kula zaraz
po jej wrzuceniu

• νi(t) to liczba urn zawierających ≥ i kul zaraz po wrzuceniu t-tej kuli

• µi(t) to liczba kul o wysokości ≥ i zaraz po wrzuceniu t-tej kuli

Prosto widzimy, że
∀i∈[n], t∈[n] νi(t) ≤ µi(t)

bo w każdej urnie zawierającej ≥ i kul jest przynajmniej jedna kula wysokości ≥ i.
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Siła dwu wyborów. Model eksperymentu, wypowiedzi twierdzeń. Dowód
ograniczenia górnego (ten w książce) przez iterację ograniczeń na praw-
dopodobieństwa warunkowe pewnych zdarzeń.

W tej sekcji znajduje się wyłącznie dowód ograniczenia górnego górnego przez iterację ogra-
niczeń na prawdopodobieństwa warunkowe. Model eksperymentu oraz wypowiedzi twierdzeń
znajdują się w rozdziale 24.

25.1 Ograniczenie górne przez iterację ograniczeń

Przejdźmy wreszcie do pierwszego dowodu ograniczenia górnego twierdzenia 24.1.1. Tak na-
prawdę będziemy dowodzić że

P(max(X1, . . . , Xn) ≥ log2 lnn+O(1)) <
1

nα−1

ale jak się temu przyjrzymy to możemy zauważyć, że z odpowiednim α da nam to co chcemy.

Niech
β4 =

n

4

βi+1 = 2
β2
i

n
dla 4 ≤ i ≤ i∗

i∗ zostanie zdefiniowane później.

Lemat 25.1.1.
βi+4 =

n

22i+1

a więc
βi+4 ≤

n

22i

Dowód. Przeprowadźmy dowód indukcyjny. Dla i = 0

β4 =
n

4
=

n

21+1
=

n

220+1
= β0+4
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Jeśli lemat zachodzi dla i to

βi+5 = 2
β2
i+4

n
= 2

(
n

22i+1

)2
n

= 2
n

22(2i+1)
= 2

n

22i+1+2
=

n

22i+1+1
= β(i+1)+4

a więc zachodzi też dla i+ 1

Zdefiniujmy teraz Ei jako zdarzenie zachodzące jeśli νi(n) ≤ βi. Widzimy, że

P(E4) = P
(
ν4(n) ≤

n

4

)
= 1

bo oczywiście ≥ n
4

kul może mieć co najwyżej n
4

urn.

Chcemy teraz wykazać, że jeśli Ei zaszło, to prawie na pewno Ei+1 też zaszło. Dla t ∈ [n]

definiujemy binarną zmienną losową Yt

Yt =

{
1 dla h(t) ≥ i+ 1 ∧ νi(t− 1) ≤ βi

0 wpp.

Zauważmy, że dla (K1, . . . , Kt−1) będącego zmiennymi losowymi reprezentującymi urny do
których trafiły kolejne kule oraz (ω1, . . . , ωt−1) takiego, że ∀i∈[t−1] ωi ∈ [n] zachodzi

P(Yt = 1 | (K1, . . . , Kt−1) = (ω1, . . . , ωt−1)) ≤
(
βi

n

)2

Jest tak, ponieważ aby zaszło h(t) ≥ i + 1 t-ta kula musi obiema symulacjami trafić w urnę
o przynajmniej i kulach, ale wiemy z νi(t − 1) ≤ βi że takich urn jest co najwyżej βi z n

możliwych.

Jeśli Ei zaszło, to µi+1(n) =
∑

t∈[n] Yt, ponieważ z Ei wiemy, że νi(t − 1) ≤ βi jest prawdziwe
dla każdego t, a więc Yt = 1 ⇐⇒ h(t) ≥ i + 1, a więc suma Yt zlicza liczbę kul o wysokości
≥ i+ 1, co jest dokładnie definicją µi+1(n).

Niech pi :=
(
βi

n

)2
. Z lematu 24.2.2 dostajemy

P

∑
t∈[n]

Yt > k

 ≤ P(Bin(n, pi) > k)

Teraz przy użyciu tego pokażemy, że P(¬Ei+1) jest małe, jeżeli Ei zaszło. Najpierw policzymy

87



MPI Pytanie 24

prawdopodobieństwo warunkowe:

P(¬Ei+1 | Ei) = P(νi+1(n) > βi+1 | Ei)

≤ P(µi+1(n) > βi+1 | Ei)

= P

∑
t∈[n]

Yt > 2npi | Ei



Tutaj w ostatniej równości robimy dwie rzeczy: korzystamy z faku, że jeżeli Ei zaszło, to µi+1 =∑
t∈[n] Yt, oraz z definicji βi+1 i pi podstawiamy βi+1 = 2npi

P

∑
t∈[n]

Yt > 2npi | Ei

 ≤
P
(∑

t∈[n] Yt > 2npi

)
P(Ei)

≤ P(Bin(n, pi) > 2npi)

P(Ei)

W drugiej nierówności korzystamy z faktu z lematu 24.2.2. Przekształacając dalej:

P(Bin(n, pi) > 2npi)

P(Ei)
≤ 1

e
npi
3 P(Ei)

≤ 1

nα P(Ei)

Na koniec korzystamy z nierówności Czernowa (lemat 24.2.1), oraz zakładamy, że npi ≥
3α ln(n). Ostatecznie otrzymujemy:

P(¬Ei+1 | Ei) ≤
1

nα P(Ei)

Teraz możemy ograniczyć P(¬Ei+1):

P(¬Ei+1) = P(¬Ei+1 | Ei) P(Ei) + P(¬Ei+1 | ¬Ei) P(¬Ei)

≤ P(¬Ei+1 | Ei) P(Ei) + P(¬Ei)

≤ 1

nα
+ P(¬Ei)

Gdzie na końcu ponownie korzystamy z założenia, że npi ≥ 3α ln(n). Pokazujemy przez induk-
cję:

P(¬Ei+1) ≤
1

nα
+ P(¬Ei) ≤

1

nα
+

i

nα
=

i+ 1

nα

Ponieważ wiemy, że P(E4) = 1, zatem P(¬E4) = 0 ≤ 4
nα
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Teraz wracamy do i∗ i definiujemy je jako minimalne i takie, że npi < 3α lnn. Możemy zauwa-
żyć, że to co pokazaliśmy z indukcji jest prawdziwe jedynie dla i < i∗, lecz działa jeszcze dla
P(¬Ei∗) bo pracowaliśmy na Ei+1, a więc P(¬Ei∗) ≤ i∗

nα

Chcemy jeszcze znaleźć i∗ więc rozważamy następujący ciąg nierówności:

npi < 3α lnn

Podstawiamy pi =
(
βi

n

)2
n

(
βi

n

)2

< 3α lnn

Tworzymy mocniejszą nierówność, korzystając z faktu, że βi ≤ n

22i−4

n

( n

22i−4

n

)2

< 3α lnn

n

3α lnn
< 22

i−4·2 = 22
i−3

Logarytmujemy stronami i podstawiamy c = 1
ln 2

:

c · lnn− c · ln(3α)− log2 lnn < 2i−3

Ponownie tworzymy mocniejszą nierówność przez zwiększenie lewej strony:

c · lnn < 2i−3

Znowu logarytmujemy stronami:

ln c+ log2 lnn < i− 3

Ostatecznie otrzymujemy

log2 lnn+O(1) < i =⇒ i∗ ≤ log2 lnn+O(1)
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Znając i∗ możemy dalej ograniczać prawdopodobieństwo, że νi(n) będzie duże dla i ≥ i∗

P(νi∗+1(n) > 9α lnn | Ei∗) ≤ P(µi∗+1(n) > 9α lnn | Ei∗)

= P

∑
t∈[n]

Yt > 9α lnn | Ei∗


≤ P(Bin(n, pi) > 9α lnn)

P(Ei∗)

≤
P
(
Bin(n, 3α lnn

n
) > 9α lnn

)
P(Ei∗)

≤ 1

nα P(Ei∗)

Pierwsze przekształcenia robimy tak samo jak wyżej i korzystając z npi < 3α lnn. Ostatnia
nierówność wynika z Czernowa:

P(X > (1 + 2) · 3α lnn) ≤
(
e2

33

)3α lnn

<
(
e−

1
3

)3α lnn

=
1

nα

Z tego otrzymujemy:

P(νi∗+1(n) > 9α lnn) ≤ P(¬Ei∗) P(νi∗+1(n) > 9α lnn | ¬Ei∗) + P(Ei∗) P(νi∗+1(n) > 9α lnn | Ei∗)

≤ P(¬Ei∗) +
1

nα

≤ i∗ + 1

nα

Zostało nam ostatnie warunkowe ograniczenie:

P(µi∗+2(n) ≥ β | νi∗+1(n) ≤ 9α lnn) ≤
P
(
Bin(n,

(
9α lnn

n

)2
) ≥ β

)
P(νi∗+1(n) ≤ 9α lnn)

≤
nβ
(
9α lnn

n

)2β
P(νi∗+1(n) ≤ 9α lnn)

≤ (9α lnn)2β

nβ P(νi∗+1(n) ≤ 9α lnn)

Gdzie w pierwszej nierówności jako p dla w rozkładzie dwumianowym podstawiamy prawdo-
podobieństwo, że dwukrotnie trafimy do wystarczająco wypełnionych urn. Druga nierówność
to union bound.
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Teraz mamy wszystko, żeby pokazać górne ograniczenie.

P(νi∗+2+2α(n) ≥ 1) ≤ P(µi∗+2+2α(n) ≥ 1)

≤ P(µi∗+2(n) ≥ 2α)

≤ P(µi∗+2(n) ≥ 2α | νi∗+1(n) ≤ 9α lnn) P(νi∗+1(n) ≤ 9α lnn)

+ P(νi∗+1(n) > 9α lnn)

≤ (9α lnn)4α

n2α
+

i∗ + 1

nα

<
1

nα−1

Gdzie ostatnia nierówność zachodzi dla odpowiednio dużego n.
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(⋆). Siła dwu wyborów. Model eksperymentu, wypowiedzi twierdzeń. Do-
wód ograniczenia górnego przez drzewa świadczące.

W tej sekcji znajduje się wyłącznie dowód ograniczenia górnego przez drzewa świadczące. Model
eksperymentu oraz wypowiedzi twierdzeń znajdują się w rozdziale 24.

26.1 Ograniczenie górne przez drzewa świadczące

Dowód ograniczenia górnego przez drzewa świadczące wzorowany artykułem.

Definicje drzew świadczących

Jak poprzednio, rzucając kulę losujemy jednostajnie d ≥ 2 urn i wrzucamy kulę do najmniejszej.
Będziemy dalej nazywać i-tą wylosowaną urnę dla kuli b i-tą lokacją kuli b.

Definicja 26.1.1. Drzewo świadczące rzędu L to pełne, ukorzenione drzewo d-arne wy-
sokości L. Każdy wierzchołek w drzewie reprezentuje pewną kulę, niekoniecznie unikalną -
kula może być reprezentowana przez wiele wierzchołków. Dodatkowo, dla każdego wierzchołka
v niebędącego liściem, kule odpowiadające dzieciom v muszą już znajdować się w urnach w
momencie rzucania kuli v.

Ogólna idea dowodu będzie następująca; rozważmy wszystkie drzewa świadczące. Powiemy za
moment, co oznacza że jakieś konkretne drzewo świadczące jest aktywne, a następnie pokażemy,
że jeśli w którejś z urn jest dużo kul, to któreś z drzew świadczących jest aktywne. Tym samym
prawdopodobieństwo, że któraś urna ma dużo kul jest ograniczone przez prawdopodobieństwo,
że jest jakieś aktywne drzewo świadczące.

Definicja 26.1.2. Dodajmy sobie dodatkową intepretację dla struktury dowolnego drzewa
świadczącego.

• Krawędziozdarzenie ("edge event") - dla krawędzi e = (u, v), gdzie v jest i-tym dziec-
kiem u, krawędź e określa zdarzenie, że i-ta lokacja kuli u jest taka sama, co któraś z
lokacji kuli v.

https://dl.acm.org/doi/10.1145/792538.792546
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• Liściozdarzenie ("leaf event") - liść drzewa świadczącego v określa zdarzenie, że każda
z d lokacji kuli v wskazuje na urnę, gdzie znajdują się już co najmniej 3 inne kule, które
nie są zareprezentowane wierzchołkami drzewa.

Definicja 26.1.3. Krawędź lub liść drzewa świadczącego są aktywne, jeśli podczas rzucania
kul do urn zaszły odpowiadające im krawędzio- lub liściozdarzenia. Drzewo świadczące jest
aktywne, jeśli wszystkie jego krawędzie i liście są aktywne.

Konstrukcja drzew świadczących

Z początku będziemy zakładać, że zdarzenia opisywane przez drzewa świadczące są niezależne
od siebie. W szczególności, rozważamy tylko drzewa, gdzie wierzchołki reprezentują parami
różne kule - ta prostsza wersja posłuży później do pełnego dowodu.

Lemat 26.1.1. Jeśli któraś z urn posiada więcej niż L + 3 kule, to istnieje aktywne drzewo
świadczące rzędu L.

Dowód. Niech urna x ma co najmniej L+4 kule. Skonstruujemy aktywne drzewo następująco.

Niech korzeń reprezentuje ostatnio wrzuconą kulę z x. Zauważmy, że każda z d lokacji tej
kuli wskazuje na urnę, gdzie były już L + 3 kule. Przypisujemy dzieciom korzenia kule, które
znajdowały się najwyżej w tych urnach w momencie wrzucania kuli korzenia. Dalej postępujemy
tak samo z dziećmi aż całe drzewo zostanie skonstruowane.

Można zauważyć, że kula korzenia została wrzucona do swojej urny po co najmniej L+3 innych
kulach. Podobnie w momencie wrzucania kul każdego z dzieci korzenia, w ich urnach były już
co najmniej L+ 2 kule itd.

Zauważmy też, że każda kula reprezentowana przez liść miała już co najmniej 3 inne kule w
urnie w momencie jej wrzucania.

Otrzymaliśmy drzewo świadczące o wszystkich krawędziach i liściach aktywnych, więc jest to
drzewo aktywne.

Jeśli udałoby się ograniczyć z góry prawdopodobieństwo na istnienie aktywnego drzewa świad-
czącego rzędu L, to byłoby to także ograniczenie na prawdopodobieństwo, że istnieje urna o co
najmniej L+ 4 kulach.

Jeśli w drzewie świadczącym jest m wierzchołków, to możemy przypisać im kule na nm spo-
sobów. Prawdopodobieństwo, że krawędź (u, v) jest aktywna jest co najwyżej d

n
, ponieważ

prawdopodobieństwo, że i-ta lokacja u trafi w wybraną z lokacji v jest co najwyżej 1
n
. Z nie-

zależności prawdopodobieństwo, że wszystkie krawędzie są aktywne jest co najwyżej
(
d
n

)m−1.
Prawdopodobieństwo aktywacji konkretnego liścia jest co najwyżej 1

3d
, ponieważ każda z lokacji

kuli liścia musi trafić w urnę o co najmniej 3 innych kulach - a takich urn jest co najwyżej n
3
.

Tym samym gdy oznaczymy przez q liczbę liści w drzewie, to prawdopodobieństwo aktywacji
wszystkich liści jest co najwyżej 3−dq.
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Łącząc to wszystko ze sobą i nakładając union bounda dostajemy ograniczenie na istnienie
aktywnego drzewa świadczącego:

nm ·
(
d

n

)m−1

· 3−dq

Zachodzą także nastepujące ograniczenia: m ≤ 2q oraz 2d2 ≤ 3d. Gdy podstawimy je wraz z
q = dL dostaniemy ograniczenie:

nm ·
(
d

n

)m−1

· 3−dq = n · dm−1 · 3−dq ≤ n · d2q · 3−dq

≤ n · 2−q · 3dq · 3−dq = n · 2−dL

A gdy weźmiemy L ≥ logd log2 n + logd(1 + α) dla α > 0, ograniczymy prawdopodobieństwo
istnienia odpowiedniego aktywnego drzewa świadczącego przez n−α.

Konstrukcja pełnych drzew świadczących

W poprzedniej części dowodu rozważaliśmy tylko prawdopodobieństwo aktywacji drzew świad-
czących o parami różnych kulach. W rzeczywistości jednak ta sama kula może wystąpić w
drzewie wielokrotnie - i wtedy zdarzenia konstruujące drzewo nie są już niezależne. W tym
celu możemy poodcinać niektóre wierzchołki, które nam się nie będą podobać, aby przywrócić
niezależność. Odcinanie wierzchołków zwiększa jednak prawdopodobieństwo aktywacji takiego
drzewa, więc zaczniemy od większej struktury.

Definicja 26.1.4. Pełne drzewo świadczące rzędu L dla pewnej stałej κ ∈ N2 ma następu-
jącą konstrukcję: Korzeń drzewa ma κ dzieci, każde z których ma dokładnie jedno dziecko - tym
samym korzeń ma także κ wnuków. Każdy z wnuków jest korzeniem standardowego drzewa
świadczącego rzędu L. W dodatku, w pełnym drzewie świadczącym kule przypisane do dzieci
korzenia muszą być parami różne, a korzeń jako jedyny nie ma przypisanej kuli.

Lemat 26.1.2. Jeśli któraś z urn posiada więcej niż L + 3 + κ kul, to istnieje aktywne pełne
drzewo świadczące.

Dowód. Niech urna x posiada co najmniej L+4+κ kul. Wybieramy z niej κ ostatnio wrzuconych
kul i przyporządkowujemy je dzieciom korzenia. Następnie przyporządkujemy kule wnukom.
Rozważmy kulę b przypisaną do v - dziecka korzenia. Przynajmniej jedna z lokacji b wskazuje
na urnę x - jeśli jest ich więcej, należy wybrać jedną z nich. Niech i to indeks tej lokacji. Weźmy
następną lokację, czyli i+1 mod d. W momencie wrzucania b, ta lokacja wskazuje na urnę o co
najmniej L+ 3 kulach. Ostatnio wrzuconą do tej urny kulę przed wrzuceniem b przypisujemy
do dziecka v, czyli wnuka korzenia.
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Przycinanie pełnych drzew świadczących

Definicja 26.1.5. Zdefiniujemy przycięte pełne drzewo świadczące konstrukcyjnie. Za-
czynając od pełnego drzewa świadczącego, będziemy odcinać jego krawędzie w odpowiedni
sposób. Począwszy od korzenia, przeglądamy drzewo w kolejności BFS. Za każdym razem gdy
przeglądamy wierzchołek v, który reprezentuje kulę, która była już widziana wcześniej, prze-
cinamy krawędź łączącą v z jego rodzicem. Odcinamy w ten sposób v wraz z całym jego
poddrzewem. Zauważmy, że procedura ta nie odetnie nigdy dzieci korzenia, gdyż reprezentują
kule parami różne. Przecięte w ten sposób krawędzie będziemy dalej nazywać odciętymi ("cutoff
edge"). Kontynuujemy odcinanie do momentu, aż przeglądniemy całe drzewo albo odetniemy κ

krawędzi. Do przyciętego drzewa świadczącego trafiają jednak tylko przeglądnięte wierzchołki
i krawędzie, wraz z krawędziami odciętymi, jako świadectwo miejsc odcięcia.

Wyróżniamy dwa przypadki.

Przypadek 1 - mniej niż κ odciętych

Jeśli odcięliśmy mniej niż κ krawędzi, to znaczy, że jeden z wnuków korzenia wraz z poddrzewem
przetrwał przycinanie. To oznacza, że mamy aktywne drzewo świadczące o parami różnych
kulach, a prawdopodobieństwo na to już ograniczyliśmy przez n−α.

Przypadek 2 - κ odciętych

Pozostaje jedynie ograniczyć prawdopodobieństwo wystąpienia aktywnego przyciętego drzewa
świadczącego o κ odciętych krawędziach. Ograniczymy to prawdopodobieństwo przy założeniu,
że liczba kul reprezentowanych przez pełne drzewo świadczące jest co najwyżej M = 2κ(α +

1) log2 n. Jest co najwyżej Mκ sposobów na przycięcie pełnego drzewa świadczącego - zamianę
pełnego drzewa świadczącego w przycięte. Niech m będzie liczbą kul reprezentowanych przez
przycięte drzewo, a q to liczba liści. Liczba sposobów na dopasowanie kul do wierzchołków
to co najwyżej nm. Przyjmijmy, że korzeń przyciętego drzewa (który nie ma przypisanej kuli)
zamiast tego ma przypisaną urnę, z której wyjęliśmy kule dla jego dzieci. Jest n sposobów na
wybranie tej urny, i mając tę urnę prawdopodobieństwo aktywacji wszystkich krawędzi to co
najwyżej

(
d
n

)m, a prawdopodobieństwo, że wszystkie liście są aktywne jest ograniczone przez
3−dq.

Okazuje się, że dostaliśmy niemal to samo ograniczenie. Mimo to, q i m mogą być mniejsze niż
poprzednio. Możemy jednak wciąż wyciągnąć lepsze ograniczenie patrząc na odcięte krawędzie.

Każda odcięta krawędź jest świadkiem, że jakaś kula b reprezentowana przez nieprzycięty wierz-
chołek u dzieli lokację z jakąś kulą b′ innego wierzchołka u′ - jest to powód, dlaczego ta krawędź
została odcięta. Wierzchołek u′ został przeglądnięty przed u, więc z pewnością jest częścią przy-
ciętego drzewa świadczącego. Przycięta krawędź opisuje, która lokacja kuli b trafiła w lokację
dzieloną z kulą b′. Liczba możliwości na wybranie u′ i tym samym b′ jest ograniczona z góry
przez m ≤ M . Prawdopodobieństwo, że wybrana lokacja b trafi w tę samą urnę co któraś z lo-
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kacji b′ jest co najwyżej d
n
. Tym samym prawdopodobieństwo posiadania κ odciętych krawędzi

ograniczamy przez
(
M d

n

)κ.
Możemy teraz zauważyć, że skoro pozbyliśmy się zbędnych kul, a wszystkie liściozdarzenia, kra-
wędziozdarzenia i odcięciozdarzenia są niezależne, to pozostaje przejść do ostatecznego ogra-
niczenia, co następuje:

Mk · nm+1 ·
(
d

n

)m

· 3−dq ·
(
Md

n

)κ

= n · dm · 3−dq ·
(
M2d

n

)κ

Stosujemy teraz podobne ograniczenia jak poprzednio: m ≤ 2q, d2 ≤ 3d oraz M ≤ 2κ(α +

1) log2 n.

n · dm · 3−dq ·
(
M2d

n

)κ

≤ n ·
(
M2d

n

)
≤ n

(
d(2κ(α+ 1) log2 n)

n

)κ

= n−κ+1+o(1)

To zamyka ograniczenie drugiego przypadku, a tym samym cały dowód.
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(⋆). Siła dwu wyborów. Model eksperymentu, wypowiedzi twierdzeń. Do-
wód ograniczenia dolnego.

W tej sekcji znajduje się wyłącznie dowód ograniczenia dolnego. Model eksperymentu oraz
wypowiedzi twierdzeń znajdują się w rozdziale 24.

27.1 Ograniczenie dolne

Teraz będziemy dowodzić, że:

P(log2 lnn−O(1) ≤ max(X1, . . . , Xn)) ≥ 1− 1

n

Czyli dowodzimy ograniczenie dolne twierdzenia 24.1.1. Co ważne, nie robimy tego w pełnym
wariancie tego twierdzenia, czyli dla nα dla dowolnego α, a wyłącznie dla α = 1. Tak samo
jest jednak w książce oraz w materiałach które otrzymaliśmy i na egzaminie wystarczy znajo-
mość poniższego dowodu. Sam dowód przebiega bardzo podobnie do iteracyjnego ograniczenia
górnego.

Niech
γ0 = n

γi+1 =
n

2i+3
·
(γi
n

)2

Lemat 27.1.1.
γi =

n

2
∑i−1

k=0(i+2−k)2k

W szczególności:
γi ≥

n

24·2i

Dowód. Można to pokazać indukcyjnie. Zauważmy, że dla i = 0 suma w potędze mianownika
wyniesie 0, zatem faktycznie γ0 = n. Zakładamy, że powyższy wzór jest prawdziwy dla γi.
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Pokazujemy prawdziwość dla γi+1:

γi+1 =
n

2i+3

(γi
n

)2
=

n

2i+3
·
(

1

2
∑i−1

k=0(−+2−k)2k

)2

=
n

2i+3 · 22·
∑i−1

k=0(i+2−k)2k

=
n

2i+3 · 2
∑i−1

k=0(i+2−k)2k+1

=
n

2i+3 · 2
∑i

k=1(i+3−k)2k

=
n

2
∑i

k=0(i+3−k)2k

Zdefiniujmy teraz Fi jako zdarzenie zachodzące jeśli νi
(
n
(
1− 1

2i

))
≥ γi. Widzimy, że P(F0) = 1.

Będziemy wykazywać, że P(¬Fi+1 | Fi) jest małe.

Ustalmy i oraz t ∈ R = [n
(
1− 1

2i

)
, n
(
1− 1

2i+1

)
]. Zdefiniujmy zmienną losową Zt:

Zt = 1 ⇔ h(t) = i+ 1 ∨ νi+1(t− 1) ≥ γi+1

Dodatkowo:

P(h(t) = i+ 1) =

(
νi(t− 1)

n

)2

−
(
νi+1(t− 1)

n

)2

Ponieważ aby t-ta kula była na (i+ 1)-szym poziomie, to musimy dwukrotnie wylosować urnę
mającą przynajmniej i kul (lecz nie wylosować dwa razy urny mającej przynajmniej i+1 kul).
Ograniczamy z dołu P(Zt = 1), znając wyniki poprzednich rzutów:

P(Zt = 1 | (K1, . . . Kt−1) = (ω1, . . . , ωt−1),Fi) ≥
(γi
n

)2
−
(γi+1

n

)2
≥
(γi
n

)2
−

(
n

2i+3

(
γi
n

)2
n

)2

≥ 1

2

(γi
n

)2
Pierwsza nierówność wynika z tego, że albo νi+1(t− 1) ≥ γi+1, co samo daje nam Zt = 1, albo
νi+1(t− 1) < γi+1 oraz νi(t− 1) ≥ γi (z warunkowania po Fi)

P(Zt = 1 | (K1, . . . Kt−1) = (ω1, . . . , ωt−1),Fi) ≥ pi :=
1

2

(γi
n

)2
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Z lematu 24.2.3 otrzymujemy:

P

(∑
t∈R

Zt < γi+1 | Fi

)
≤ P

(
Bin
( n

2i+1
, pi

)
< γi+1

)
≤ e−

npi
2i+1

1
8

<
1

n2

Gdzie druga nierówność wynika z 24.2.1, a trzecia działa dla npi
2i+1 ≥ 17 lnn.

Jeżeli zaszło ¬Fi+1 to bezpośrednio z definicji Fi mamy

∀t∈R νi+1(t− 1) ≤ νi+1

(
n

(
1− 1

2i+1

))
< γi+1

W takim razie, dalej dla ¬Fi+1, otrzymujemy∑
t∈R

Zt =
∑
t∈R

[h(t) = i+ 1]

≤ νi+1

(
n

(
1− 1

2i+1

))
< γi+1

Skoro ¬Fi+1 =⇒
∑

t∈R Zt < γi+1 to

P(¬Fi+1 | Fi) ≤ P

(∑
i∈R

Zt < γi+1 | Fi

)
<

1

n2

Gdzie ostatnia nierówność ponownie jest prawdziwa dla takich i, że npi
2i+1 ≥ 17 lnn. Niech i∗

będzie największym i spełniającym tą nierówność. Wtedy:

P(Fi∗) ≥ P(Fi∗ | Fi∗−1) . . .P(F1 | F0) P(F0) ≥
(
1− 1

n2

)i∗

Teraz chcielibyśmy poznać i∗. Podobnie jak dla poprzedniego dowodu, tworzymy sobie ciąg
coraz mocniejszych nierówności. Przypomnijmy, że pi =

1
2

(
γi
n

)2 oraz γi+1 =
n

2i+3 ·
(
γi
n

)2
npi
2i+1

=
n

2i+2

(γi
n

)2
= 2γi+1

2γi+1 ≥ 17 lnn

Ponieważ γi ≥ n

24·2i
(z 27.1.1):

2 · n

24·2i+1 ≥ 17 lnn

24·2
i+1 ≤ 2n

17 lnn
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4 · 2i+1 ≤ log2 2 + log2 n− log2(17 lnn)

Dla wystarczająco dużego n, to jest mocniejsza nierówność:

4 · 2i+1 ≤ 1

2 ln 2
lnn

2 + i+ 1 ≤ log2 lnn+ log2

(
1

2 ln 2

)
i ≤ log2 lnn−O(1)

Zatem
i∗ ≥ log2 lnn−O(1) =

ln lnn

ln 2
−O(1)

oraz:

P(Fi∗) ≥
(
1− 1

n2

)i∗

Pozostało teraz tylko dowieźć
(
1− 1

n2

)i∗ ≥ 1− 1
n

dla odpowiednio dużego n, z czego będziemy
już mieli P(Fi∗) ≥ 1− 1

n
, a więc z wysokim prawdopodobieństwem istnieje urna z przynajmniej

i∗ kulami, co kończy dowód. Przejdźmy więc do tej ostatniej części

(
1− 1

n2

) ln lnn
ln 2

−c

≥
(
1− 1

n2

) ln lnn
ln 2

=

(
1− 1

n2

)−n2·− ln lnn

n2 ln 2

(
1− 1

n2

)−n2

dąży do e z góry, zatem:

e2 > (4/3)4 ≥
(
1− 1

n2

)−n2

≥ e

e
−2 ln lnn

n2 ln 2 ≤
(
1− 1

n2

)−n2·− ln lnn

n2 ln 2

≤ e
− ln lnn

n2 ln 2

Teraz skorzystamy z rozwinięcia ex w szereg Taylora

ex = 1 + x+
x2

2!
+

x3

3!
+ . . .

możemy zauważyć, że dla x ∈ (−ε, 0)

1 + x+ x2 ≥ ex ≥ 1 + x− x2

zatem:

1− 1

n
≤ 1− 2 ln lnn

n2 ln 2
−
(
2 ln lnn

n2 ln 2

)2

≤
(
1− 1

n2

)−n2 − ln lnn

n2 ln 2

gdzie pierwsza nierówność zachodzi dla wystarczająco dużego n a druga wynika z dolnego
ograniczenia na ex.
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Dodatkowe materiały

W tym rozdziale znajdują się twierdzenia i lematy, które nie są bezpośrednio częścią żadnego
pytania, ale jakieś dowody do nich linkują.

28.1 Aproksymacja szeregu harmonicznego

Lemat 28.1.1. Hn = ln(n) + Θ(1)

x

y

1
1

1
2

1
3 1

4
1
5

1
2

1
3

1
4

1
5

1
61 2 3 4 5 6

n−1∑
i=1

1

i
= Hn−1 ≥

∫ n

1

1

x
dx = ln(n)

n∑
i=2

1

i
= Hn − 1 ≤

∫ n

1

1

x
dx = ln(n)


=⇒ ln(n) ≤ Hn ≤ ln(n) + 1

28.2 Wartość oczekiwana iloczynu

Twierdzenie 28.2.1. Dla dowolnych niezależnych zmiennych losowych X i Y :

E[X · Y ] = E[X] · E[Y ]
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Dowód.

E[X · Y ] =
∑
i

∑
j

(ij) · P(X = i ∩ Y = j)

=
∑
i

∑
j

ij · P(X = i) · P(Y = j)

=
∑
i

i · P(X = i) ·
∑
j

j · P(Y = j)

= E[X] · E[Y ]

28.3 Wartość oczekiwana naturalnej zmiennej losowej

Twierdzenie 28.3.1 (Lemat 2.9 P&C). Niech X będzie zmienną losową przyjmującą jedynie
wartości w liczbach naturalnych. Wtedy

E[X] =
∞∑
n=1

P(X ≥ n)

Dowód.

∞∑
n=1

P(X ≥ n) =
∞∑
n=1

∞∑
k=n

P(X = k)

=
∞∑
k=1

k∑
n=1

P(X = k)

=
∞∑
k=1

k · P(X = k)

= E[X]

28.4 Równość funkcji tworzących

Twierdzenie 28.4.1. (Bez dowodu)

Niech X, Y - zmienne losowe.

Jeżeli zachodzi:
∀t∈(−δ,δ)MX(t) = MY (t)

gdzie δ > 0 oraz MX(t) i MY (t) istnieją w przedziale (−δ, δ) to X i Y mają ten sam rozkład.
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28.5 Ograniczenie górne Czernowa prób Poissona

Twierdzenie 28.5.1. Niech X1, . . . , Xn to niezależne próby Poissona. Dodatkowo oznaczamy
X =

∑n
i=1Xi i µ = E[X]. Wtedy dla każdego δ ∈ (0, 1) zachodzi

1. P (X ≤ (1− δ)µ) ≤
(

e−δ

(1−δ)1−δ

)µ
2. P (X ≤ (1− δ)µ) ≤ e−

µδ2

2 .

Dowód. Dowód identyczny jak w 4.1.2, wybieramy t = ln(1− δ) < 0 i korzystamy z tego, że
e−z jest antymonotoniczne. Drugiego punktu ponownie dowodzimy licząc pochodne i na ich
podstawie dowodząc odpowiedniej nierówności.
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