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Pytanie 1

Rozktad dwumianowy, rozktad geometryczny i ich wtasnosci. Wtasnosé
bez pamieci, warto$¢ oczekiwana, wariancja, wyzsze momenty. Funkcje
tworzgce momentow.

1.1 Rozklad dwumianowy

Definicja 1.1.1. Méwimy, ze zmienna losowa X ma rozklad dwumianowy z parametrami

n,p (Oznaczana poprzez B(n,p)), jesli dla j =0,1,...,n:

Jest tak, gdy powtarzamy jakis eksperyment wielokrotnie (n razy, gdzie p to szansa powodzenia)

i liczymy, ile razy eksperyment si¢ powiodt.

Fakt 1.1.1. Rozktad dwumianowy jest poprawnie zdefiniowany

ZP(XZj)Z(p+(1—p))”=1

Twierdzenie 1.1.1. Niech X ma rozktad dwumianowy z parametrami n, p. Wtedy
E[X] =np

Dowdd.

n 1, sukces w i-tej probie
X =3 X, X = »P
i=1 0 wpp

E[X]=E

ZX] :ZE[}Q] => P(Xi=1) :Zp:np

=1
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Twierdzenie 1.1.2. Niech X ma rozktad dwumianowy z parametrami n, p. Wtedy
Var[X] = np(1 — p)

Dowdad.
Var[X| = Var

Z X,-] = Z Var[X;]

Gdzie X; to indykatory dla kolejnych zdarzen. Wariancja dla jednego indykatora:

Var[X;] = E[[(Xz — E[Xz])ﬂ
P(X; =0) (0—p)?+P(X; =1) (1-p)?

Sumujac po i dostajemy:

n

> VarlXi] = 3 (1= p)p = np(1 - p)

i=1

Twierdzenie 1.1.3. Funkcja tworzaca momenty:
Mx(t) = (1—p+pe')"

Dowad.

1.2 Rozklad geometryczny

Definicja 1.2.1. Méwimy, ze zmienna losowa X ma rozklad geometryczny z parametrem

p € (0,1) jesli dlan > 0
P(X=n)=01-p)""p
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Twierdzenie 1.2.1 (Lemat 2.8 P&C). Rozktad geometryczny jest bez pamieci tzn. jesli X

ma rozktad geometryczny z parametrem p to
Vor P(X=n+k| X >k)=P(X =n)

Dowdd.

P(X =n+kAX >k)
P(X > k)
P(X =n+k)
P(X > k)
_(Q—pEtep
(1 —p)*
=({l-p""'-P

P(X=n+k|X >k =

[]

Twierdzenie 1.2.2. Niech X ma rozktad geometryczny z parametrem p. Wtedy tworzaca tej

zmiennej wynosi

pe
Mi(t) = 1—(1—pet
dlat < —1In(1 —p).
Dowad.
Mx(t> = E[etx}
=> (1 —p)'pe"
=1
p - )
= —- 1—ple
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SkorzystaliSmy tutaj z faktu, ze szereg

> (1 =pe)
i=1
jest zbiezny. Dzieje sie tak gdy
(1-p)' <1
1
el < ——
L—p
t<—In(l—-p)

[]

Whniosek 1.2.1. W oparciu na funkcje tworzaca momenty, mozemy obliczy¢ wartos¢ oczeki-
wana, wariancje, oraz dowolne wyzsze momenty Wiemy, ze M )(? )(0) = E[X"]. Obliczamy wiec
M)((l)(t) oraz M)(?) (t). Otrzymujemy:

MP(t) = 2p(1 = p)(1 — (1 — p)e") > + p(1 — (1 — p)e')2¢!

Po podstawieniu ¢ = 0 otrzymujemy znane juz wartosci:




Pytanie 2

Problem kolekcjonera kuponow (wartosé oczekiwana). Oczekiwana liczba
poréwnan w algorytmie sortowania Quicksort.

2.1 Problem kolekcjonera kuponéw

Wyobrazmy sobie problem, ktory jest bliski wielu osobom. Prébujemy przepchaé program na
satori ale jak na zto$¢ mamy ANS. Sfrustrowani zaczynamy pisa¢ wtasne testy w nadziei ze
znajdziemy przypadek brzegowy. I tutaj pojawia si¢ pytanie — jesli generujemy testy losowo
a mozliwych przypadkow jest n to ile testow potrzebujemy w oczekiwaniu wygenerowaé aby

mie¢ pewnosé, ze pokrylismy kazdy przypadek?

Problem ten, jak wiele podobnych, mozemy modelowac za pomoca zbierania kuponéw — mamy
ich do zebrania n a szansa na uzyskanie i-tego rodzaju jesli zebraliSmy juz ¢ — 1 wynosi p; =
1— % Niech X; oznacza czas czekania na i-ty kupon jesli mamy juz i — 1 innych. Wtedy X =
Yoy X; jest tym czego szukamy — czasem otrzymania kazdego kuponu (pokrycia wszystkich

przypadkow testowych).

Zauwazmy jeszcze, ze X; ma rozkltad geometryczny z parametrem p; zatem E[X;| = - =

n n

- 1
E[X] =) E[X]= ZH_LM =n) ~=n-H,=nlnn+06(n)
i=1 i=1 i—1

Ostatnia réownos¢ wynika z [28.1.1}

2.2 Oczekiwana liczba poréwnan Quicksorta

Quicksort jaki jest kazdy widzi — pamietamy z ASD, ze jego ztozonos¢ to pesymistycznie O(n?),

ale w losowym przypadku O(nlgn).

Twierdzenie 2.2.1 (2.11 P&C). Rozwazmy standardowy algorytm Quicksort, w ktorym pi-
vota wybieramy losowo, niezaleznie i jednostajnie. Wtedy oczekiwana liczba poréwnan wynosi

2nlnn + O(n).
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Dowod. Niech zq,...,x, bedzie wejsciowym ciagiem n réznych liczb. Niech yy, ...y, bedzie

posortowang permutacja tych wartosci.

Definiujemy indykatory dla ¢ < j; niech

1 jesli y;,y; zostaly poréwnane chociaz raz

Xij =
wpp-
Laczna liczba porownan X wynosi X = >~/ Fyn i—it1Xi,j Oczekiwana liczba porownan wynosi
zatem
n—1 n
=2 D> EIX
i=0 j=i+1

Zastanowmy sie¢ kiedy elementy y;,y; sa porownywane. Na pewno ktory$ z nich musi zostacé
wybrany jako pivot. Ale ponadto muszg by¢ w momencie tego wyboru na jednej liscie, ktora

jest aktualnie sortowana. Niech Y = {y;,...,y;}.

Jesli wybrany zostanie pivot ktory lezy poza ta lista, to nie dojdzie do ,rozspdjnienia” tej listy

i kiedy$ bedzie mogto nadal doj$¢ do poréwnania y; z y;.

Jesli wybrany zostanie pivot z tej listy rézny od y; oraz y;, to te 2 elementy juz nigdy nie

zostang ze soba poréwnane, jako ze beda znajdywac sie na 2 oddzielnych listach.

W takim razie X;; = 1 wtedy i tylko wtedy, gdy pierwszym pivotem wybranym ze zbioru Y/

jest element y; lub element y;.

Jako, ze losowanie jest jednostajne i w ogole, to kazdy element z listy ma doktadnie takie same
szanse na ,zostanie pivotem”. Jako, ze elementoéw na liscie jest j —¢+1, to prawdopodobienstwo,

czyli E[X; ;] = —2

ze wybierzemy y; lub y; Wyn081 = T

et

Aby policzy¢ ostateczny wynik sumujemy sie po wszystkich parach ¢ < j:
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Teraz korzystamy z [28.1.1] i dostajemy

EX]=2(n+1)-H, —0O(n)
=2(n+1)-(lnn+06(1)) — O(n)
=2nlnn + O(n)




Pytanie 3

Wtiasnosci wariancji. Nierownosé Markowa. Nierownosé Czebyszewa i jej
zastosowanie w problemie kolekcjonera kuponow.

3.1 Wariancja
Definicja 3.1.1. Wariancje zmiennej losowej X definiujemy jako
Var[X] = E[(X ~ E[X])*] = E[X?] - E[x]

Czyli jest to drugi moment zmiennej X przesunietej o swoja warto$é¢ oczekiwang. Intuicyjnie
jest to miara tego, jakiego odchylenia od wartosci oczekiwanej mozemy sie spodziwac.

Operator wariancji nie jest liniowy.

Definicja 3.1.2. Odchylenie standardowe zmiennej losowej X definiujemy jako
o(X) =4/ Var[X]
Definicja 3.1.3. Kowariancje zmiennych losowych X oraz Y definiujemy jako

Cov(X,Y) = E[(X — E[X]) - (Y — E[Y])]

Twierdzenie 3.1.1.
Vaser Var[bX + a] = b* Var[X]
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Dowad.

Var[bX + a] = E[(bX + a)?] — EbX + a)’
=E[b*X? + 2abX + a*] — (E[X] + a)?
= VE[X?] + 2abE[X] + a® — E[X]* — 2abE[X] — o’
— 1 (E[X?] - EIX]’)
= b* Var[X]

Twierdzenie 3.1.2. Dla dowolnych zmiennych losowych X,Y zachodzi
Var[X + Y| = Var[X] + Var[Y]| + 2 Cov(X,Y)
Dowdd. Rozpisujemy Var[X + Y| z definicji.

Var[X + Y] = [(X+Y IEX+Y])}

E
E[((X — EIX]) + (v — E[¥]))]
E[(X ] FE[(Y — E[Y])?] + 2B[(X — E[X))- (v ~ E[Y])
Var[X]| + Var[Y] +2Cov(X,Y)

Twierdzenie 3.1.3. Dla niezaleznych zmiennych losowych X, Y
Cov(X,Y)=0

a co za tym idzie

Var[X + Y] = Var[X] + Var[Y]

Dowad.

'Mozemy to zrobi¢ przez [28.2.1
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Twierdzenie 3.1.4. Niech Xy,..., X,, beda parami niezalezne. Wtedy

Z Xi] = Z Var[X;]

Var

Dowdd. Skoro nasze zmienne sg parami niezalezne, to dla dowolnych X; # X; mamy Cov(X;, X;) =
0. W takim razie

Var zn:Xi =E (i(Xz —E[XJ))
— S E[ B + 32 DI~ ELX)) - (X, — ELX,))

= Z Var[Xz] + Z Z COV(Xi7 XJ)

i=1 j=1
= Var[X]]
=1

O
3.2 Nier6éwnos¢ Markowa
Twierdzenie 3.2.1. Jesli X jest zmienng losowa, ktéra przyjmuje nieujemne wartosci to
E[X
P(X >a) < X]
a
Dowadd. Niech I bedzie indykatorem
7 1 gdy X >a
0 wpp.
Skoro X >0tol < % Zatem
E[X
a
O

10
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3.3 Nier6wnosé¢ Czebyszewa

3.3.1 Definicja

Twierdzenie 3.3.1 (Twierdzenie 3.6 P&C). Dla dowolnego a > 0

Dowdd. Korzystamy z nieréwnosci Markowa

P(IX —E[X]| > a) = P((X ~E[X])* > a*) <

3.3.2 Kolekcjoner kuponéw
Niech Xi,..., X, opisuja czasy czekania na i-ty kupon oraz X = > X, — laczny czas czekania.
Aby w ogole moc liczy¢ co$ nieréwnoscia Czebyszewa potrzebujemy obliczyé Var[X].

Skorzystamy tutaj z bardzo wygodnego twierdzenia a nastepnie z [[.2.1] aby dostaé¢

Var[X] = Z Var[X;]

IN
|

Teraz wktadamy to do nieréwnosci Czebyszewa:

Var[X] 7 1
P(|X — nH,| > nH,) < - -0
(X =nHu| 2 nta) < <7 = 5 (ln2n>

11



Pytanie 4

Ogo6lny schemat nieréwnosci Czernowa. Nieréwnosé Czernowa dla sum
niezaleznych prob Poissona. Zastosowanie tej nieroéwnosci: niezalezne
rzuty sprawiedliwa moneta.

4.1 Nierownos$é Czernowa

4.1.1 Definicja

Laczymy ze soba dwie rzeczy — funkcje tworzace momenty, oraz nieréwnos$é¢ Markowa.

Twierdzenie 4.1.1.

E tX
Viso P(X > a) = P(eX > et) < [et ]
e a
oraz X
E
Vico P(X < a) = P(e™ > ') < [et }
e a

w szczegolnosci

>0 ete

P(X > a) < min {E[et“]}

X oraz et zawsze

Dowdd. Niezaleznie od tego jakie wartosci przyjmuje X oraz ile wynosi ¢ to e
beda dodatnie. Monotoniczno$é e przy ustalonym ¢ zalezy jedynie od znaku zatem przejécia

miedzy prawdopodobienstwami zachodza.

Ograniczenie gorne uzyskujemy korzystajac z nieréwnosci Markowa zastosowanej do (dodat-

X

nich) wartosci e'* oraz e'. O

4.1.2 Proby Poissona

Definicja 4.1.1. Prébami Poissona nazywany ciag zmiennych losowych Xi,..., X, dla
ktorych
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Ponadto definiujemy
=[S0 X - B - X
Dodatkowo, jezeli V; jen pi = pj, to nazywamy to probami Bernoulliego.

Twierdzenie 4.1.2. Niech Xi,..., X, to niezalezne préoby Poissona. Dodatkowo oznaczamy
X =>",X,ip=E[X]. Wtedy

e 1. el #
1. jeslid >0, to P(X > (1+d)p) < <m>

—pus?

2.jeslil1>0>0,toP(X > (1+0)u) <e 3

3. jesli R > 6p, to P(X > R) < 27F
Dowadd. Liczymy funkcje tworzaca

[

My, (t) =E [¢™] = pie' + (1 = p;) =1+ pi(ef = 1) < epile=1).

Zatem

Ustalmy ¢ > 0, mamy

E [etX] e(et_l)“

_ tX t(1+9)
P(X > (1+0)u) = P! > !001) < R S

el+o—1

Niech ¢t = In(1+0) > 0. Wychodzi nam P(X > (14 d)u) < (W

pierwszej czesci.

“w
) , co konczy dowod

Punkt drugi dowodzimy korzystajac z pierwszego, wystarczy pokazac, ze dla § € (0, 1] jest

el 52

<5
(1406)"" ~

Logarytmujemy stronami, chcemy pokazac, ze 6 — (14 d)In(1 +9) + % < 0. Oznaczmy lewg
strone przez f(9). Liczymy pochodne:

f(0)=1—=1-In(1+9) 1 5—}—35— ln(1—|—5)+35,
" 1 2

f(0) = 0, a potem maleje do 0 = % (tam druga pochodna sie zeruje, przedtem ujemna), potem

rosnie, ale f/(1) < 0, wiec jest ujemna na calym (0, 1].

13
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f(9) tylko maleje na (0, 1], wiec nier6wnosé dziata, bo f(0) = 0.

Dowodzac punkt trzeci zaktadamy R > 6u. Niech R = (1 4 6)pu, czyli 6 = % —1>5.
e i e (1+6)p e\ R 1 R
PX>0+0p<|——— ) <(—— <(_><_ —2 R
(X2 +0u) < ((1+5)1+5> —<1+5> —\6 —(2)

4.1.3 Rzuty moneta

Przykltad 4.1.1. Chcemy ograniczy¢ z gory prawdopodobieristwo, ze przy n rzutach moneta
wyrzucimy orta wiecej niz %n razy. Widzimy, Zze nasze rzuty to niezalezne proby Poissona o

p= %, p=73,0= %, a wiec mozemy uzy¢ wzoru 2. W takim razie mamy

3 — 52 7”‘1 —n
P(Xzzn) <ot _ A e

14



Pytanie 5

Kule i urny: obcigzenie najciezszej urny prawie zawsze jest co najwyzej

3lnn
Inlnn-

5.1 Kule i urny - ograniczenie gorne

Zanim zaczniemy, zaprezentujemy dwa proste lematy potrzebne w oszacowaniu

Lemat 5.1.1. Dla dowolnych n > M

Dowad.

¥ w szereg Taylora:

Dowdd. Korzystamy z rozwiniecia e

P L
CTLN T H
i=0
Przeksztalcajac otrzymujemy
ek 1
R

co daje nieréwnosé z tezy.

IN
<[~

O

Rozwazmy bardzo prosty model - wrzucamy sobie n kul do n urn niezaleznie i jednostajnie.

Oczywiscie srednio w jednej urnie spodziewamy sie zobaczy¢ jedna kule, ale ile spodziewamy
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sie zobaczy¢ kul w najbardziej zapelnionej urnie? Na to pytanie odpowiemy twierdzeniem.

Twierdzenie 5.1.1 (Lemat 5.1 P&C). Jesli wrzucamy n kul do n urn to prawdopodobienstwo,

3lnn

Ze najciezsza urna zawiera co najmniej M = kul wynosi co najwyzej % dla odpowiednio

" Inlnn

duzych n.

Dowod. Nie ma co sie zraza¢ mnogoscig logarytmow; sam w sobie dowdd jest wzglednie prosty —

stosujemy dwa razy union-bound, a ograniczenie z tezy po prostu palujemy naszymi lematami,

na egzaminie raczej nie bedziecie potrzebowali obliczen.

Prawdopodobieristwo, ze ustalony podzbior M kul wyladuje w ustalonej urnie wynosi (n M

Roznym podzbioréw jest ( AZ), zatem z union bounda dostajemy ograniczenie na prawdopodo-

bienistwo, ze w ustalonej urnie jest co najmniej M kul wynosi

() G)

Korzystamy teraz z obu lematow i ograniczamy prawdopodobieristwo na to, ze istnieje urna w

ktorej jest co najmniej M kul przez co najwyzej
e \M
n —
(31)
Teraz wstawiamy magiczne M z tezy i dostajemy:
( e >M < elnlnn
n{— n
M - 3lnn

Inlnn (3Inm)/(Inlnn)
<)

> (3lnn)/(Inlnn)

Zauwazamy, ze e < 3

lnn

Aby pokazaé¢ postulowang w tezie nieréwnosé bierzemy obustronnie logarytm

(lnlnn)(i’)lnn)/(lnlnn) 1
n < —
n

lnn

1
Inn+ ((Inlnlnn) — (lnlnn))(3 nn> < —lnn

Inlnn /) —
Wymnazamy i przenosimy na jedna strone

3(Inn)(lnlnlnn) <0

—Inn+

Inlnn

Sprowadzamy do wspélnego mianownika

(Inn) - (3(Inlnlnn) — (Inlnn))

Inlnn

<0

16
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Poniewaz Inn i Inlnn sa od pewnego momentu dodatnie to nieréwnosé¢ sprowadza sie do po-
kazania, ze

Inlnn > 3Inlnlnn

co juz jest trywialne.

17
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Rozktad Poissona i jego wtasnosci: momenty, suma niezaleznych zmien-
nych, tworzaca momentéw i ograniczenia Chernowa.

6.1 Rozklad Poissona

6.1.1 Podstawowe wtlasnosci
Definicja 6.1.1. Mowimy, ze zmienna losowa X ma rozktad Poissona z parametrem \ jesli

DY

nl

Voen P(X =n) =e

Aby upewnic¢ si¢, ze jest to poprawny rozktad policzmy >~ P(X = n)

o0 oo B )\n
;P(X:n)zge ’\-H

Twierdzenie 6.1.1. Niech X ma rozktad Poissona z parametrem \. Wtedy

E[X] = A
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Dowad.

]

Twierdzenie 6.1.2 (Lemat 5.3 P&C). Jesli zmienna X ma rozktad Poissona z parametrem A

to
Mx(t) = exp(A(e' — 1))

Dowdad.

W przedostatnim przejéciu korzystamy z faktu, ze > ° % = exp(z) ]

Twierdzenie 6.1.3 (Lemat 5.2 P&C). Jesli X ma rozklad Poissona z parametrem Ax a Y
rozktad Poissona z parametrem Ay, a ponadto obie zmienne sg niezalezne to X +Y ma rozktad

Poissona z parametrem Ax + Ay

19
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Dowod. Poniewaz X 1Y sa niezalezne to

My (t) = Mx(t) - My (¢)
= exp(Ax (e’ — 1)) -exp(Ay (e’ — 1))
= exp(()\X + )\y)(et — 1))

Skoro rozktad zmiennej X +Y tworzony jest przez funkcje, ktora wyglada jak rozktad Poissona,

to musi by¢ ona rozktadem Poissona z parametrem Ax + Ay O

Twierdzenie 6.1.4. Niech X ma rozktad Poissona z parametrem \. Wtedy
Var[X]| = A

Dowdd. Liczymy druga pochodna Mx(t) = exp(A(e' — 1)) i wychodzi. O

6.1.2 Ograniczenia Czernowa

Twierdzenie 6.1.5. Niech X bedzie zmienng o rozkladzie Poissona z parametrem p. Wtedy:
1. jesli & > p, to P (X > ) < <t
2. jesliz < p, to P(X < x) geﬂ;(%)m

o L1 65 K
3.jeslio >0,to P(X > (1+0)pu) < (W)

. 1. e"s "
4. jesiO<d<ltoP(X<(1-=0§)p) < <W>

Dowdd. Niech t > 0,z > p. Mamy

tX >
p (X > x) < E [i } — eu(et—l)—tl‘ < euﬁ—,u—ln<ﬁ):c —eH. (%) 7
etr €T

gdzie podstawiliémy ¢ = In (f) > (. Drugi punkt robi sie identycznie, wtedy mamy In (f) < 0.

Trzeci i czwarty punkt sa po prostu podstawieniem do poprzednich. O

20
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Aproksymacja Poissona oraz jej zastosowanie do problemu kul i urn: ob-

clazenie najciezsze] urny jest prawie zawsze co najmniej 1;?1:‘”

7.1 Aproksymacja Poissona

7.1.1 Definicja

Czasem mamy do czynienia ze zmiennymi, ktére pojedynczo zachowuja sie grzecznie, ale jako
calos¢ sa powigzane w sposob, ktory istotnie utrudnia ich analize. Z pomocg przychodzi Aprok-
symacja Poissona, w ktorej uniezaleznimy wszystkie zmienne, a nastepnie bedziemy analizowaé

ich zachowanie pod pewnymi warunkami.
Bardziej formalnie opisuje to ponizsze twierdzenie.

Twierdzenie 7.1.1 (Twierdzenie 5.6 P&C). Niech

x® xR

n

opisuja (faktyczne) rozmieszczenie k kul w n urnach.

Ponadto, niech
vy

beda niezaleznymi zmiennymi z rozktadem Poissona z parametrem A = ™

Wtedy

=1
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Dowad. Policzmy najpierw lewa strone réwnosci

1 k k—k
(k) _ k) __ 1
P(x =k, X _kn)_—_nk.(kl>.( . )

Policzmy teraz prawg strone

P(Yl(m) — kA A = kn)
P(Sv™ =)

P<Y1(m) =k Y =k, | DY = k) =
=1

Korzystamy z faktu, ze nasze zmienne sa niezalezne, oraz suma n Poissonéw z parametrem

A = 2 ma rozklad Poissona z parametrem m

B ﬁ D U N S e Ak
B ‘ R e Y N P

i=1
B ()
kil ook, emm.mk
k!

k- k! nk

Po obu stronach wyszto to samo, fajnie. O]

Skoro umiemy zamienia¢ kule i urny na warunkowe Poissony to fajnie byloby co$ umieé¢ o nich

powiedzieé.

Twierdzenie 7.1.2. Niech f(z1,...,x,) bedzie funkcja zwracajaca nieujemne wartosci. Wtedy

E[f(XW,...,Xgm)))} < eﬁ-E[f(Yl(m),...,Yém)ﬂ

k=0
>E[F(v, ) 13 =m] PSS v = m)
:E-f<Xfm),...,X7§m))>] e T
L m:
: 1
>E (X“’” o, X )] .
_f 1 > ) “in ) em

22
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7.1.2 Kule i urny

W twierdzeniu [5.1.1| pokazaliSmy, ze gérne ograniczenie na liczbe kul w najciezszej urnie to z

duzym prawdopodobienistwem O (hﬁ%) .

Teraz pokazemy, ze dolne ograniczenie to z duzym prawdopodobienistwem Q(lﬂ:n)

Twierdzenie 7.1.3 (Lemat 5.12 P&C). Dla wystarczajaco duzego n, jesli wrzucamy n kul do

n urn to prawdopodobienistwo, ze najciezsza urna zawiera co najwyzej M = 2% kul wynosi

" Inlnn

€O najwyzej %
Dowdd. Rozwazmy te sytuacje w modelu Poissona — liczba kul w ustalonej urnie ma rozktad
Poissona z parametrem A = = = 1.

W takim razie, prawdopodobieristwo, ze ustalona urna zawiera co najmniej M kul wynosi

Prawdopodobieristwo, ze kazda urna zawiera mniej niz M kul wynosi zatem co najwyzej

1 1 n< n
~eM! _eXp(_eM!>

Z faktu, ze 1 —x < e ",

Jesli nasze M jest na tyle fajne, ze zachodzi

to wtedy na mocy twierdzenia prawdopodobienistwo, ze w prawdziwym modelu kazda

urna ma mniej niz M kul wynosi co najwyzej

1

n

1
6\/5'—2<
n

Inn
Inlnn

Pozostaje pokazaé, ze M = jest wystarczajace dla duzych n.

Bierzemy zatem obustronnie logarytm z zadanego warunku

n

n

">
2elnn —

23
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Znowu bierzemy logarytm obustronnie (bo mozemy, lol)

Inn —Inlnn — In(2¢e) > In(M!)

Wykorzystamy teraz magiczne oszacowanie

M! < em(%)M SM(%)M

i dostajemy

In(M!) <InM+MInM - M
=M ((Inlnn) — (Inlnlnn)) +In M — M
=(M-(Inlnn) —M)— (M- (Inlnlnn) —In M)
=(lnn—M)— (M- (Inlnlnn) — In M)

Teraz korzystamy z faktu, ze In M € o(M - (Inlnlnn))

Inn

<(Inn—M)=Inn—

Inlnn

I jeszcze korzystamy z faktu, ze (Inlnn)? € o(lnn) a zatem Inlnn € o

Inn
Innln

zamienié na lnlnn 4+ In 2e
<Inn —Inlnn — In(2e)

czyli nasze M dziata. Uff.

Inn
Inlnn

) . Mozemy wiec

24



Pytanie 8

Problem kolekcjonera kuponéw: granica prawdopodobienistwa, ze nie zbie-
rzemy wszystkich n kuponéw po nInn + cn krokach.

8.1 Granica kolekcjonera kuponéow

Twierdzenie 8.1.1. Niech X bedzie liczba zebranych kuponéw az do zebrania wszystkich n
rodzajow. Wtedy dla dowolnej stalej ¢

lim P(X >nlnn+en)=1—e"

n—oo

Dowdd. O zbieraniu kuponéw mozemy mysleé jak o wrzucaniu kul do urn — wrzucenie kuli do

odpowiedniej urny odpowiada zebraniu odpowiedniego kuponu.

Bedziemy zatem liczy¢ prawdopodobienstwo, ze po wrzuceniu m = nlnn + cn kul do n urn

jakas urna nadal pozostaje pusta.

Rozwazmy ten problem w modelu Poissona, a potem pokazemy jak wyciagna¢ z tego wynik

dla rzeczywistego modelu. Mamy zatem A = = =Inn +c¢

Prawdopodobieristwo, ze ustalona urna jest pusta wynosi

_ e ¢
e o —e (lnn+c):_

0! n

Poniewaz w modelu Poissona urny sa niezalezne to prawdopodobieristwo, ze zadna urna nie

jest pusta (czyli kazda ma co najmniej jedna kule) wynosi

(-5

Nazwijmy to zdarzenie £. Z powyzszego faktu mamy

lim P(&) =e "

n—0o0
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Wszystko fajnie i w ogole, ale my by$my chcieli dostaé rzeczywiste prawdopodobienstwo &, kto-
rego nie mozemy sobie tak po prostu przeniesé z Poissona na rzeczywisty model, bo pamietamy
z twierdzenia [7.1.1] Zze wolno nam jedynie przej$¢ rownoscia warunkowa tj. P(€ | X = m), a

tego nie znamy.
Aby sobie z tym poradzi¢ rozbijemy nasze zdarzenie £ na dwie czedci. Ustalamy 0 = vmInm

i rozbijamy za pomoca prawdopodobienistwa catkowitego:

PE)=PE||X —m| <6)-P(X —m| <8)+ P(E||X —m| >08) P(IX —m]| > d)

Teraz chcemy pokazaé dwie rzeczy. Po pierwsze, ze drugi sktadnik jest pomijalnie maly (zbiega
do zera). Po drugie, ze pierwszy sktadnik zbiega do P(£ | X = m) czyli tego co probujemy

obliczy¢.
1. Szacujemy P(|X — m| > §) przy pomocy nieréwnosci Czebyszewa.

Poniewaz X ma rozktad Poissona z parametrem p = m to
Var(X|=pu=m

W takim razie z nier6wnosci Czebyszewa

Var[X] m 1
— < — —
P(|X —m|>¢) < 5 = €o(1)

2. Szacujemy roznice miedzy tym czego szukamy a tym co mamy:
[P(E|[X —m|<d)—PE|X =m)
Zauwazamy dos¢ naturalny fakt — im wiecej kul wrzucamy tym wieksza szansa na to, ze
kazda ma jakas kule. Innymi stowy
PE|X=m)>PE&|X=m—90)

oraz

PE|IX —m| <)< PE| X =m+3)

Mozemy zatem zastapi¢ odpowiednie wyrazenia przez ich oszacowania aby dostaé stabsze

ograniczenie:
[PEIX =m| <) —PE|X=m)<PE|X=m+0)—-PE|X=m-0)

Wyrazenie po prawej stronie oddaje sytuacje, kiedy wrzuciliSmy m — ¢ kul, ale nadal jakas

urna pozostaje pusta, natomiast po dorzuceniu kolejnych 24 kul zostala ona zapetiona.

26
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Prawdopodobienstwo, ze konkretna kula trafi do konkretnej pustej urny wynosi %, zatem

prawdopodobieristwo, ze jaka$ kula trafi do tej urny jest ograniczone przez union bound:

2 2vml |
mmxzm+®—mwxzm—®g£:—lﬁﬂkﬂ mom

n n?

Przypominamy sobie, ze m = nlnn + cn, zatem mlnm € o(n?). W takim razie nasze

oszacowanie zbiega do zera, a co za tym idzie, szacowana réznica tez.

Korzystajac z powyzszych faktéw, dochodzimy do wniosku, ze

lim P(E) = P(E | |X —m| <8)- P(IX —m| < 8) + P(E||X —m| >d) P(IX —m| > d)

n—oo

nli_)rgloP(E [ X —m| <9d)-(1—o(1))+P(E||X —m|>J) o(l)
— lim (P(€ | X =m) +o(1)) - (1 - o(1))
= lim P(£ | X =m)

n—oQ

A to jest doktadnie to co chcieliSmy pokazac. O]
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Pytanie 9

FLancuch Markowa. Nieprzywiedlnosé, okres stanu i okres tancucha. Praw-
dopodobienistwa przejs¢ pomiedzy stanami w nieprzywiedlnym i nieokre-
sowym tanicuchu Markowa. Stany powracajace (dodatnie i zerowe) i chwi-
lowe. W kazdym nieprzywiedlnym, skoficzonym tancuchu Markowa ocze-
kiwany czas przejscia pomiedzy dwoma stanami jest skonczony.

9.1 Definicja laincucha Markowa

Definicja 9.1.1. Procesem stochastycznym nazywamy dowolny zbiér zmiennych losowych
{X;:t € T}. Zwykle t oznacza moment w czasie, a X; jest stanem tego procesu w czasie t.

Zbior stanéw czesto oznaczany jest jako S.
Definicja 9.1.2. Proces jest skoriczony, jesli zmienne X; przyjmuja skoriczenie wiele wartosci.

Definicja 9.1.3. Proces jest dyskretny, jesli zmienne X, przyjmuja wartosci ze zbioru prze-

liczalnego.

Definicja 9.1.4. Proces jest z czasem dyskretnym, jesli T jest przeliczalne (najczesciej
T =N).

Definicja 9.1.5. Lanncuchem Markowa nazywamy proces stochastyczny z czasem dyskret-

nym {X;},.y dla ktorego

1. dla kazdego t > 0 oraz (ag, ..., a;) takiego, ze P(i_, Xi = a;) > 0 zachodzi

t
P<Xt+1:y‘mXi:ai) :P(Xt+1:y’Xt:at>

i=0
2. dla kazdego t > 01 x,y € S zachodzi

PXypi=2 | Xy =y)=P(Xs =2 | X1 =y)

Wiasciwosé 1. mowi nam, ze aby dosta¢ rozklad zmiennej X; wystarczy, ze znamy rozktad
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zmiennej X;_; tzn. tancuch Markowa jest bez pamieci. Warto zauwazy¢, ze nie oznacza to,
ze X, jest niezalezne od X;_o, X;_3,... — jest, ale cala ta zalezno$é jest zawarta w zaleznosci

od stanu X;_;.

Za wtasciwos¢ 2. moéwi nam, ze bez znaczenia na czas, prawdopodobienstwo przejscia z okre-

Slonego stanu x do stanu y jest zawsze takie samo.

Warto zaznaczy¢ ze niektore zrodla definiuja tanicuchy Markowa jako procesy spetniajace wy-
tacznie wlasciwosé 1., a procesy spetniajace 1. oraz 2. nazywaja tancuchami Markowa czasu
homogenicznego, jednak na probabilu dla uproszczenia terminologii uzywamy powyzszej defi-
nicji.

Definicja 9.1.6. Oznaczamy dalej p;; = P(X; = j | Xi—1 =1).

Definicja 9.1.7. Macierza przejscia tanicucha Markowa nazywamy macierz P zadang wspot-

czynnikami p;;.

Definicja 9.1.8. p;j(n) = P(X,, = j | Xo =1)

9.2 NieprzywiedIlnosé i okres stanu

Definicja 9.2.1. Dla i € S definiujemy 7 (i) = {t > 1 | p;;(t) > 0}. Jest to zbioér takich ¢, ze

jesteSmy w stanie dojs¢ z ¢ do ¢ w t krokach.

Definicja 9.2.2. Okres stanu dla i € S definiujemy jako o(i) = ged(7 (7))

N

Rysunek 9.1: Stan z ma okres 1

Definicja 9.2.3. Stan j jest osiggalny ze stanu i jesli istnieje n > 0 takie, ze p;;(n) > 0.
Zapisujemy ¢ — j.

Definicja 9.2.4. Stany ¢ oraz j sa wzajemnie skomunikowane jesli ¢ jest osiagalne z j oraz

7 jest osiggalne z i. Zapisujemy i <> j.

Lemat 9.2.1. Relacja skomunikowania jest relacja rownowaznosci.

Dowod. Rozwazamy trzy warunki bycia relacja réwnowaznosci

1.1
Mozemy dojsé¢ z ¢ do ¢ w 0 krokach — p;;(0) =1

29
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2,06 = J i
Koniunkcja jest przemienna, mozemy zatem zamienié¢ kolejno$é¢ warunkéw w definicji.

i Nk = ik
Skoro i <+ j to mamy n dla ktorego P;;(n) > 0.

Podobnie mamy m dla ktérego Pj,(m) > 0.
W takim razie p;z(n 4+ m) > p;j(n) - Pjr(m) > 0 zatem k jest osiagalne z i.
Analogicznie pokazujemy, ze i jest osiagalne z k, czyli stany te sa skomunikowane.

]

Dodatkowo w grafie skierowanym klasy rownowazno$ci relacji <+ tworza silnie spéjne sktadowe.

Definicja 9.2.5. Lancuch jest nieprzywiedlny (nieredukowalny) jesli wszystkie stany sa

parami skomunikowane. Wtedy jego graf skierowany jest silnie spojny.

Definicja 9.2.6. Stan i jest okresowy jesli o(i) > 1, czyli jego okres jest wiekszy od 1.
Lancuch jest okresowy jesli posiada co najmniej jeden stan okresowy. Stan lub tancuch, ktory

nie jest okresowy nazywamy nieokresowym.

9.3 Okres nieprzywiedlnego lanncucha Markowa
Lemat 9.3.1. W nieprzywiedlnym tancuchu Markowa wszystkie stany maja ten sam okres.

Dowdd. Niech i,j € S - dwa stany taricucha.

Z nieprzywiedlnosci mamy:

Ellpjz<l> >0

Niech n € T(j)
pi(m +n+1) > py(m) - pj;(n) - pju(l) >0

pii(m+1) = pi(m) - p;i(l) > 0
To znaczy chcemy dojé¢ z i do ¢ w m + n + [ krokach, wiec mozemy iS¢ zido j,zj5dojizj
do 7. W drugim przypadku pomijamy n krokéw z j do j.

m+n+1eT(i) = o(i) | m+n+I

m+leT(lE) = o(i) | m+1

Mamy teraz o(i) | n, a wiec o(i) jest dzielnikiem kazdego elementu T (j), a wiec jest < od jego

nwd, a wiec o(i) < o(j). Analogicznie dowodzimy w druga strone, otrzymujac rownosé. O
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9.4 Prawdopodobienstwa przejs¢ pomiedzy stanami w nie-

przywiedlnym i nieokresowym lanicuchu Markowa

Lemat 9.4.1. Jesli {X; |t € N} jest nieokresowym i nieprzywiedlnym tancuchem Markowa,
to:

vz"jes Elno anno pz] (TL) >0

Dowdd. Lemat Schura:

i€[r]

pjj(m) = Hpjj(limi) > Hpjj(mi)li >0

i€(r] i€(r]
Z kolei z nieprzywiedlnosci mamy:

7 —)j > Elml pij(ml) >0

Niech ng = mg + my

Vnsno Pij(n) > pij(ma)pjj(n —mq) >0

9.5 Stany powracajace i chwilowe

Definicja 9.5.1. Definiujemy piewszy czas pojawienia sie w j jako:
T; =min(n € N | X,, = j)
T;" =min(n € Ny | X, = j)

W drugim przypadku pomijamy stan poczatkowy n = 0.

Definicja 9.5.2. Definiujemy prawdopodobienistwo pierwszego spotkania w zadanym

momencie f;;(n) jako

fiin) =P(Xp =jAXn 1 #j.. X1 #j| Xo=1) =PI =n| Xy =1i)
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Definicja 9.5.3. Definiujemy prawdopodobieristwo pierwszego spotkania f;; jako
fii =Y fij(n) =P(T; < oo | Xo = 1)
n=1

Definicja 9.5.4. Stan i jest powracajacy (rekurencyjny) jesli f;; = 1, a chwilowy jesli

fm’ < 1.
Moéwimy, ze taricuch jest rekurencyjny jesli kazdy jego stan jest rekurencyjny.

Definicja 9.5.5. Definiujemy czas pierwszego spotkania

T;; =min{n € N; | Xo =i A X, = j}

dodatkowo
E[T,,] =R[T} | Xo=i] =Y nP(T} =n| Xo=1i) =) nfi;(n)
n=1 n=1

Definicja 9.5.6. Stan powracajacy i jest dodatni jesli E[T; ;] < oo, w przeciwnym wypadku

jest zerowy.

9.6 Wlasnos$¢ nieprzywiedlnego, skonczonego tanncucha Mar-

kowa

Twierdzenie 9.6.1. W skoniczonym, nieprzywiedlnym taricuchu Markowa zachodzi
\V/$7yes E[T%y] < 0
Dowoad. Nieprzywiedlnosé oraz skonczonosé daja nam

37“>0,5>0 vx,yES Elje[r] Py (]) > €

Mimo tego, ze linia ta moze poczatkowo byé¢ trudna do przetworzenia, jest catkiem prosta.
Nieprzywiedlno$¢ mowi nam ze dla kazdego (z,y), y jest osiagalne z x, a wiec 3, p,,(n) > 0.

Nasze r to po prostu maksimum po tych n dla wszystkich par (z,y), a € to minimum z wartosci
pl“,y (n)'

Nastepnie chcemy pokazacd, ze

P(T > kr | Xo=2) <P(T] > (k—1)r| Xo=2)(1—¢)
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Dlaczego tak jest? Oto6z wiemy, ze dla kazdej mozliwej wartosci z = X(;_1), zachodzi

Ele[T] pz,y«k - 1)7” +]) > €

a wiec z prawdopodobienstwem przynajmniej € odwiedzimy y w nastepnych r krokach. W
takim razie, jesli 7,7 > (k — 1)r, to P(T,7 < kr) > ¢, a wigc prawdopodobienistwo tego, Ze nie

dojdziemy do y jest ograniczone od gory przez 1 — e, co daje nam nasza nierd6wnosc.

Nastepnie, poprzez prosta indukcje mozna pokazaé, ze
P(T >kr| Xo=1)< (1-¢)
Teraz, przechodzac do finalnego dowodu i korzystajac z
E[T,,] = E[T, | X, = ]

Y P(T) >t ] Xo=1)
t=0

rP(T; > kr| Xy =)

r f:(l —e)k

WE

o

IN

0
k=0

< 00
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Pytanie 10

Rozktad stacjonarny. Istnienie, unikalno$¢ oraz interpretacja.

10.1 Rozklad stacjonarny

Definicja 10.1.1. Rozkladem stacjonarnym nazywamy wektor « taki, ze # = 7wP oraz
Dies i =1

Intuicyjnie rozktad stacjonarny opisuje jak czesto asymptotycznie odwiedzamy kazdy ze standéw
niezaleznie od tego skad zaczeliSmy. Rozktad stacjonarny nie zawsze istnieje - np. taricuch na

liczbach naturalnych, taki, ze p, 41 = 1 W oczywisty sposob nie ma rozktadu stacjonarnego.

Twierdzenie 10.1.1. Istnienie rozktadu stacjonarnego

Niech z € S, 7, = (T, 4)yes. Dodatkowo niech
E.[A] =E[A | Xy = 7]

P,(A) = P(A] X, = 2)

Toy = E,[liczba wizyt w y przed pierwszym powrotem do z| = Z P.(X;=yAT) >1t)

Dla z € S,E,[T] < oo zachodzi:

e T, =T,

Tz

E.[T:]

o T = jest rozktadem stacjonarnym

Dowdd. Druga czes¢ prosto wynika z pierwszej, poniewaz oczywiscie z definicji 7., mamy

Z Ty = E.[T]

yes
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Pozostaje nam wiec tylko udowodni¢ cze$¢ pierwsza

Y Tabey =YY PAXi=x AT > t)ps,

zE€S €S t=0
%

= PXpp =y ATS >t +1)

t=0

=Y P.(X,=yATS >1)

t=1

=Ty —P.(Xo=y AT >0)+ ) PAX, =y ATS =1t)

t=1
=Ty —P.(Xo=y) + PZ(XTj =)

= Tzy

P.(Xo =y) = P.(X;+ = y) poniewaz oba sa indykatorami y = z. O

Twierdzenie 10.1.2. Skoriczony, nieprzywiedlny taricuch Markowa ma unikalny rozktad sta-

cjonarny

Dowdd. Wezmy rozktady stacjonarne 7, ¢. Ustalmy x € S taki, ze % jest najmniejsze (mozemy

to zrobi¢, poniewaz tancuch jest skoriczony). Z definicji rozktadu stacjonarnego

TT. ﬂ-x 7T$ 7T$
g = Z TyPy,x = Z ¢_Z¢ypy,x Z Z ¢_¢ypy,x - ¢_ Z gbypy,x = ¢_¢x = T,
yeSs z x yeSs

yeSs yes x

To, ze po obu stronach mamy to samo méwi nam, ze powyzsza nieréwnos¢ to tak naprawde

rownosé. W takim razie wiemy, ze

Ty Ty

Vypy>0 — =
Y,Py,x ¢y ¢I

Widzimy wiec, ze wszystkie stany z ktorych da sie bezposrednio doj$é¢ do = maja taki sam iloraz
7 do ¢. Mozemy nastepnie analogicznie pokazac¢, ze wszystkie stany z ktorch da sie dojsé w
2,3, ... krokach do = maja taki sam iloraz. Poniewaz taricuch jest nieprzywiedlny i skoriczony,
z kazdego stanu da sie dojs¢ w skonczonej liczbie krokow do x. W takim razie wszystkie stany
maja taki sam iloraz, a wiec

7T
T=—"0¢

o
Awigcm=¢,bo ), omi=3 g0i=1 O]
Twierdzenie 10.1.3. Kazdy skonczony, nieprzywiedlny tancuch Markowa
1. Ma unikalny rozktad stacjonarny m = (m;);es

2. Vies T = —E[TﬂlXO:i]
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Dodatkowo, jesli taricuch jest nieokresowy
3. Vijeslimy oo pji(t) = m;

Dowadd. Punkt 1. udowodnilismy przed chwilg. Po chwili zastanowienia, punkt 2. prosto z niego
wynika. Dla danego 7, z twierdzenia [10.1.1| wiemy, ze istnieje rozktad stacjonarny m w ktérym
_ZinP(Xt:i/\Tf>t|X0:i) 1

E[T7 | Yo 1] BT %o 1]

Uy

Poniewaz rozktad stacjonarny jest unikalny, to jest to prawdziwe dla kazdego 1.

Za to do dowodu punktu 3. bedziemy potrzebowali wiecej narzedzi i mozna go znalezé w

I5.11 O
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Pytanie 11

Norma catkowitego wahania rozktadéow prawdopodobienistwa, wtasno-
Sci normy, sprzeganie rozktadow prawdopodobienstwa. Zwiazek miedzy
norma a sprzeganiem

11.1 Norma calkowitego wahania

Definicja 11.1.1. Niech u, v beda rozkltadami prawdopodobieristwa nad skonczonym zbiorem

S. Norma catkowitego wahania (total variation distance) tych rozkladow nazywamy wartosé

1t = vl = mas e (4) = v (4).

Lemat 11.1.1. Niech p, v beda rozktadami prawdopodobienstwa nad skoriczonym zbiorem S
Niech B={z € S: pu(x) > v(z)}. Zachodzi

I = vy = p(B) —v(B) =v(B°) — n(B°).

Dowdd. Sprobujmy przekazaé intuicje tego, czym jest norma calkowitego wahania. Ponizej

mamy wykres, na ktéorym zaznaczone sg rozkltady p oraz v oraz zbiory B i B¢

I1
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Wiemy, ze pole pod u = 1 oraz pole pod v = 1. W takim razie, mozemy zauwazy¢ ze pola [ i IT
s sobie wzajemnie rowne. Dodatkowo, patrzac na definicje normy catkowitego wahania, mozna
prosto zauwazy¢, ze jest ona réwna polu I (bo B to zbiér w ktorym p najbardziej dominuje

nad v) oraz polu II (analogicznie). Prosto widzimy, ze
Pole I = u(B) — v(B)
Pole II = v(B°) — u(B°)
Co koriczy dowdd m

Lemat 11.1.2. Niech p, v beda rozkladami prawdopodobienistwa nad skonczonym zbiorem S.
Zachodzi

= vy = 5 S () — v ()]

zeS

Dowdd. 7 poprzedniego lematu dostajemy, ze dla B={z € S : pu(x) > v (x)} jest

(M(B)—V(B)JrV(BC)—u(BC)):%ZIM(QJ)—V(@\-

€S

N | —

e = vllpy =

11.2 Sprzeganie rozkladéw prawdopodobienstwa

Definicja 11.2.1. Niech pu, v beda rozktadami prawdopodobienstwa nad skoniczonym zbiorem
S. Sprzeganiem g i v nazywamy dowolna pare zmiennych losowych (X,Y) taka, ze X ma

rozktad p, a Y ma rozktad v. W szczegdlnodci te zmienne nie musza by¢ niezalezne.

Lemat 11.2.1. Niech (X,Y') bedzie sprzeganiem p i v. Zachodzi
[ — VHTV <SPX#Y).
Ponadto istnieje sprzeganie dla ktérego zachodzi rownosé.

Dowdd. Dla dowolnego A C S mamy
p(A)—v(A)=P(X €A —PYecA)<PXeANY A <P(X#Y).

Analogicznie v (A) — p(A) < P(X #Y). To daje zadana nieréwnosc.

Teraz skonstruujemy sprzeganie spetniajace rownosé. Niech B = {z € S : u(x) > v (z)}. Niech
p1=p(B)—v(B),p2 = v (B°)—pu(B°). Mamy p1 = ps = ||t — vz Niech p3 = 1—p; = 1—po.

Rzucamy moneta z prawdopodobienistwem orta ps3. Jesli wypadnie orzet to ustalamy X =Y =

1
p3

s, gdzie s wybieramy z S z rozktadem ( -~ min (u (s),v (s)) : s € S). Jesli wypadnie reszka usta-
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lamy X = 21Y =y, gdzie x jest wybierany losowo z S z rozktadem (p% max (p(x) —v(z),0):x € S),

a y z rozkladem (p% max (v (z) — p(z),0):x € S). W przypadku reszki jedna zmienna przyj-
muje tylko te wartosci, na ktorych p jest wicksze, a druga tylko te, na ktorych v jest wicksze.
Mamy wiec P(X #Y) =1—p3 = || —v|py, a (X,Y) faktycznie jest sprzeganiem p i v —

zmienne maja odpowiednie rozktady. O]
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Pytanie 12

Lemat o sprzeganiu tancuchow Markowa, lemat o monotonicznosci.

12.1 Sprzeganie lannicuchéw Markowa

Bedziemy rozwazac taiicuch Markowa (X;),.n (skoniczony, nieprzywiedlny, nieokresowy) o ma-

cierzy przejscia P, zbiorze stanéw S i rozktadzie stacjonarnym (7, ) Przez P'(x,-) ozna-

TES”
czamy rozklad X; przy zalozeniu Xy = x.

Definicja 12.1.1. Definiujemy
Au(t) =[P (z,) = 7y,

7. () =min{t: A, (t) < ¢}

Mamy tez maksima tych wartosci:

A (t) = max A, (1)

zeSs

Tmix (€) = rileaég 7. (€)

Ostatnia z tych wartosci nazywamy czasem mieszania tanicucha Markowa. Bedziemy tez (bez

wiekszego powodu) oznaczaé Tiix = Tmix (i)

Definicja 12.1.2. Sprzeganiem lancuchéw Markowa XY o macierzy przejscia P i zbiorze
stanow S jest dowolny taricuch Markowa (Z; = (Xy,Y})),cn Da przestrzeni stanow S x S taki,
ze

P (X =2"| Zy = (z,y)) = P (z,2)

PYii=y'|Zi=(2,y) =P(y,y)
dla kazdego t > 0, x,y,2',y/ € S.

Sprzegane tancuchy to dwie rownolegte kopie jednego procesu. Nie zawsze maja one te same

stany, ale tez nie zawsze sg niezalezne. Nie ustalamy nic o stanach poczatkowych. Beda nas
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interesowaé takie sprzegania, ktore sprowadzajg obie kopie do tego samego stanu i potem je

tak utrzymuja.

12.2 Lemat o sprzeganiu lancuchéw Markowa

Lemat 12.2.1. Niech ((X¢,Y})),cn bedzie sprzeganiem taiicuchow (skonczonych, nieprzywie-
dlnych, nieokresowych) z macierza przejscia P i zbiorem stanéw S. Niech T'€ N i e > 0 beda
takie, ze dla kazdego x,y € S zachodzi

P(Xr #£Yr| Xo=2,Yy=y) <e.
Wtedy czas mieszania tancucha z macierza P jest ograniczony:
vxES Ay (T) <e¢
Tmix (£) < T.

Dowaod. Zauwazmy, ze sprzeganie spetnia zalozenia niezaleznie od tego, w jaki sposéb ustalimy
Xy 1Yy. Ustalmy dowolne x € S. Niech Xy = x i niech Y bedzie wybrany losowo z rozktadu
stacjonarnego m. Wtedy Y; ma rozktad = dla kazdego .

Niech A C S. Mamy

P(XTEA)ZP(YTEAHXT:YT):1—P(YT¢AUXT7£YT>
Z1—P(YT¢A)—P(XT%YT)ZP(YT6A>—8:7T(A)—€

Analogicznie P (X7 € A%) > 7w (A°) —¢, czyli P(Xr € A) <7 (A4) +=.

Mamy zatem
Vies Ao (T) = max [P (2, 4) — 7 (4)] <e,

ACS
a z tego wynika
Tmix (8) S T.

12.3 Lemat o monotonicznosci

Lemat 12.3.1 (O monotonicznosci). Niech P bedzie macierzg przejscia skoriczonego, nieprzy-
wiedlnego i nieokresowego tancucha Markowa ze zbiorem stanéw S i rozktadem stacjonarnym
7. Dla kazdych t > 0,z € S zachodzi

Ay (t+1) <AL ().
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Dowdd. Ustalmy ¢ > 0 iz € S. Niech (X;,Y;) bedzie sprzeganiem rozkltadow P! (z,-) i 7
speliajacym P (X; # Y;) = A, (t) (przedtem pokazalismy, ze istnieje sprzeganie, dla ktorego
ta rownos¢ zachodzi). Definiujemy (X1, Y;11) w nastepujacy sposob: jesli X; = Y;, wykonu-
jemy krok taricucha zgodnie z macierza P (na obu wspotrzednych taki sam), a w przeciwnym

wypadku wykonujemy dwa niezalezne kroki. Zauwazmy, ze Y;,; dalej ma rozktad 7. Mamy

Ay (t) = P(Xy # Y1) > P (Xepa # Yird) > [P () = 7|y = Ac (4 1)
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Pytanie 13

Twierdzenie o geometrycznej zbieznosci rozktadu stanu tancucha do roz-
ktadu stacjonarnego.

13.1 Twierdzenie o geometrycznej zbieznosci

Twierdzenie 13.1.1 (O geometrycznej zbieznosci). Niech P bedzie macierza przejscia skori-
czonego, nieprzywiedlnego i nieokresowego tanicucha Markowa ze zbiorem stanéw S i rozktadem

stacjonarnym 7. Wtedy istnieja o € (0,1) i C' > 0 takie, ze
Vien A (n) < Ca™.

Dowdd. Ustalmy r > 1 takie, ze dla kazdych z,y € S jest P"(x,y) > 0 (dla konkretnych
dwoch istnieje, bo tancuch jest nieokresowy i nieprzywiedlny, a ze skoriczono$ci mozna wziaé

maksimum).

Niech m, = min,es P" (z,y) dla y € S. Jest to najmniejsze z prawdopodobietistw, z jakimi
da si¢ przejs¢ do y krokiem macierzy P". Niech m =} _¢m, <1 (ta suma ogranicza z dotu

dowolny wiersz, a wiersz sumuje sie do 1).

Niech ((Xy,Y})),en bedzie sprzeganiem laiicuchéw o macierzy przejscia P" zadanym w naste-
pujacy sposob: Niech (X;,Y;) = (x1, x2). Zakladamy, ze jezeli tanicuchy sie zeszly, to juz sie nie
rozchodza (czyli jezeli X, oraz Y; sa rowne, to X1 1 Yy 41 rowniez beda rowne). W przeciwnym

przypadku rzucamy moneta, na ktoérej orzet wypada z prawdopodobienistem m:

e Jezeli wypadnie orzet, to Xy, = Y1 = z, gdzie x wybieramy losowo z rozktadem:

1
(Emy | QGS)

e Jezeli wypadnie reszka, to X1 = 2, Y1 = b, gdzie 2] i x, wybieramy kolejno z

rozkladami: .

() —m) v es)

1-m



MPI

Pytanie 13

(2 —m) e s)

1—m
W ten sposob skonstruowalismy sprzeganie, dla ktérego zachodzi:

m
=m

P<Xt+1 = Yt+1) = ZP<Xt+1 =Y = y) > Zm

yeSs yeSs

_Y
m

a z tego wynika P (X; # Y;) < (1 —m)". Teraz majac zadane n = rt +j dla j € {0,...,r — 1}

mozemy zapisac

A, (n) <A, (rt) = HP” (x,-) — 7THTV <P(Xi#Y) <(1- m)t =" < Ca",

r

gdzie potozylismy a = (1 — m)l iC=a".
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Pytanie 14

Losowe spacery w grafie jako zastosowanie taricuchow Markowa.

14.1 Losowe spacery w grafie

Definicja 14.1.1. Spacerem losowym na nieskierowanym grafie G nazywamy tancuch Mar-
kowa, ktorego stany odpowiadajq wierzchotkom grafu. Prawdopodobienistwo przejécia ze stanu

v do stanu u wynosi gdy (v,u) € E'10 w przeciwnym przypadku.

deg

Twierdzenie 14.1.1 (Lemat 7.12 P&C). Spacer losowy na grafie G jest nieokresowy wtedy i
tylko wtedy gdy G nie jest dwudzielny

Dowdd. (=) Jesli G jest dwudzielny, to do kazdego wierzchotka v mozna wroci¢ tylko po

parzystej liczbie krokow, bo co krok zmieniamy strone, po ktorej jestesmy.

( <= ) W niedwudzielnym G musi istnie¢ nieparzysty cykl. Niech v lezy na tym cyklu. Z jednej
strony mozna wyjs¢ do dowolnego sasiada v i wrocié, co da p,, (2) > 0, a z drugiej mozna przejsé

calym cyklem, czyli p,, (2k + 1) > 0. Zatem okres v (czyli calego spaceru) to 1. O

Twierdzenie 14.1.2 (Lemat 7.13 P&C). Spacer losowy na spojnym, niedwudzielnym grafie

deg(v)
2|E]

G posiada rozkltad stacjonarny 7 w ktoérym 7w, =

Dowadd. Pokazemy, ze tak zadane 7 faktycznie jest rozktadem stacjonarnym. Mamy

v 1
D M=) 2|E|:ﬁvZ dv

veV(Q) veV (G eV(G

a wiec faktycznie jest to rozktad. Mamy tez

B du) 1 d(v)
Z Mo P = 3 20E| dw)  20E]

ueV(G ueN (v)

gdzie drugie przejscie to zastosowanie okreslenia macierzy P dla spaceru. O]
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Definicja 14.1.2. Czas pokrycia grafu G to chwila (indeks tancucha Markowa), w ktorej spacer

odwiedzil juz kazdy wierzcholek. Taka zmienna losowa oznaczamy Cg.

Definicja 14.1.3. Zmienna losowa r,, okresla liczbe krokéw spaceru losowego przebiegajacego

od wierzchotka v do wierzcholka v.

Lemat 14.1.1. Dla kazdej krawedzi uv w grafie G zachodzi E [ry,| + E [r,.] < 2|E].

Dowdd. Majac graf G bedziemy tworzy¢ tancuch Markowa na krawedziach skierowanych. Roz-
wazamy skierowany graf D, ktory jest grafem GG, w ktérym kazda krawedz zostata przedstawiona
jako dwie krawedzie skierowane. Stanem tancucha bedg krawedzie, a z zadanej krawedzi bedzie

mozna przej$¢ do krawedzi wychodzacych z jej korica (z rownym prawdopodobieristwem).

W takim taricuchu rozktad jednostajny 7, = m jest stacjonarny. Po pierwsze ), o By Tuv =
> wvcEp 2‘];G| = 1, wiec jest to rozktad. Mamy tez

TTwu = : = = Tuw,
d(u) d(u) 2(Eq| 2|Eq]

gdzie uv jest pewng krawedzia w D. Z tego wynika, ze rozklad jest stacjonarny.

Ograniczana wartos¢ E [ry,] + E [ry,] jest oczekiwana liczba krokéw w spacerze u — v — u. W
grafie D mozna patrzeé¢ na spacer z krawedzi vu do vu. Idzie on tak samo jak przejécie z v do v
i z powrotem do u, ale ma ustalona krawedz, ktora trzeba wrocié do u. Zatem bedzie dhuzszy

od zwyktego spaceru po wierzchotkach i mamy

1
E [’ruv] +E [Tvu] < E [T(vu)(vu)} = T = 2|EG|

vu

[]

Twierdzenie 14.1.3 (Twierdzenie 7.15 P&C). Wartosé oczekiwana czasu pokrycia grafu G =
(V, E) jest ograniczona od gory przez 2|E| (|V] —1).

Dowdd. Niech T bedzie drzewem rozpinajacym G. Przejdziemy po jego wierzchotkach w kolej-
nosci DFSa. Niech vy, vy, ..., vgv|—2 beda kolejnymi wierzchotkami odwiedzonymi przez DFSa.
Oczekiwany czas pokrycia grafu jest ograniczony przez oczekiwany czas kolejnego odwiedzania

wierzchotkow wypisanych w takiej kolejnosci. Zatem

2\V|—3
E[CG] < Z E |:T'Ui'Ui+1:| = Z E [rxy] +E [ryoc] < 2|E| : (|V| - 1)-
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Pytanie 15

Rozktad jednostajny: gestosé, dystrybuanta, momenty, funkcja tworzaca
momentow, rozktad pod warunkiem, ze wylosowano wartos¢ ponizej usta-
lonego progu, wartos¢ oczekiwana k-tej statystyki n niezaleznych prob
zmiennych o rozktadzie jednostajnym.

15.1 Rozklad jednostajny

Definicja 15.1.1. Moéwimy, ze zmienna losowa X ma rozklad jednostajny na przedziale

[a, b] jesli gestosé tej zmiennej zadana jest przez funkcje

()
1
i edy z € [a,b] 1
flay=14" —a
0 wpp.
\ \ z
a b
Latwo mozna zauwazy¢, ze dystrybuanta takiej zmiennej wynosi
Y
0 gdy x < a 1
Flr)=4 42 gdya<a<b
1 gdy x > b | | T

! w
a b

Twierdzenie 15.1.1. Niech X ma rozklad jednostajny na przedziale [a, b]. Wtedy

a+b
2

E[X] =
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Dowad.

1 P-a?
Cb—a 2

1 (b—a)b+a)
Cb—a 2
_a+b

2

Twierdzenie 15.1.2. Niech X ma rozklad jednostajny na przedziale [a,b]. Wtedy

(b—a)’

Var[X] = 5

Dowad.

b—a

1 231"
“ials),
1 v -ad
b—a 3
1 (b—a)(a®+ab+0?)
b—a 3
_a’Fab+ b’
B 3

Var[X] = E[X?] _E[X]Qza +ab+b° (a+b) _(b—a)

3 2 12

Twierdzenie 15.1.3. Niech X ma rozklad jednostajny na przedziale [a,b]. Wtedy

tb__  ta
T dlat#0
Mx(t) = t(b—a)

ldlat=0
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Twierdzenie 15.1.4. Niech X ma rozktad jednostajny na przedziale [a,b]. Wtedy dla dowol-
nycha <c<d<b
c—a

P(X<e|X<d)=2
—Qa

Dowad.

]

Twierdzenie 15.1.5. Niech X, ..., X,, beda niezalezne i wszystkie maja rozktad jednostajny

na [0, 1]. Ponadto, niech Yj,...,Y, beda tymi samymi warto$ciami, posortowanymi rosnaco.
Wtedy
k
ElY;] =
Wil =

Dowdd. Modyfikujemy lekko problem i zamiast wybiera¢ n punktéw z odcinka bedziemy wy-
biera¢ n + 1 punktéw z okregu o obwodzie 1. Nazywamy je P, ..., P,. W ten sposéb X; jest
odleglosciag zgodnie ze wskazowkami zegara miedzy punktami P, P;, natomiast Y} jest odlegto-

Scig od Py do k-tego punktu zgodnie ze wskazowkami zegara.

Mamy n+1 tukéw miedzy punktami i, ze wzgledu na symetrie, oczekiwana dtugosé tuku miedzy

1

dwoma sasiednimi punktami wynosi .—.

W takim razie oczekiwana wartos¢ Yy to oczekiwana taczna dlugosé k sasiednich hukow, ktora

©_k
wynosi -5. O
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Rozktad wyktadniczy. Gestosé, dystrybuanta, momenty, funkcja tworzaca
momentoéw, wtasnosé bez pamieci, rozktad minimum n niezaleznych prob.
Funkcja Gamma i rozktad Gamma. Zwigzek z rozktadem wyktadniczym.

16.1 Rozklad wykladniczy

Definicja 16.1.1. Rozkladem wykladniczym z parametrem \ nazywamy rozktad zadany

gestoscia

Ae ™™ dlax >0

0 wpp.

| x
Intuicyjnie widzimy, ze im A jest mniejsze, tym bardziej ten wykres sie "wyplaszcza'.

Dystrybuanta takiej zmiennej wynosi

l—e™ dlaz>0
F(x) =

0 wpp.

T

dodatkowo definiujemy

e dlax>0

0 wpp.

Lemat 16.1.1. Dla X ~ Exp(a) oraz Y = < zachodzi

Y ~ Exp(ab)
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Dowdad.
PY<y)=P(X<by)=1—eW

Twierdzenie 16.1.1. Dla X ~ Exp(\) zachodzi

Dowoad.

E[X?] = / Ae M dt
0

——/ £ (=Ae M) dt

0

= —[t2e™M] " + / T ote My
0
0

:o+—/ the M dt
0

PSR IR )
> =

ol
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Alternatywnie, dla uproszczenia mozna to udowodnié¢ wyltacznie dla A = 1 a potem z [16.1.1

rozszerzy¢ na dowolne \.

Twierdzenie 16.1.2 (Lemat 8.4 P&C). Rozklad wykladniczy jest bez pamieci, tzn. dla
X ~ Exp(A), s,t € RT zachodzi

P(X>s+t|X >t)=P(X >5s)

Dowdad.

P(X >s+1)
P(X >1t)
_1-P(X <s+1t)
 1-P(X <)
_ exp(=A(s +1)
exp(—At)
=e M =P(X > s)

PX>s+t|X>t)=

]

Jest to bardzo przydatna wlasnosé, bowiem sprawia, ze mozemy ,resetowac¢” zmienng o ktorej

wiemy, ze ma wieksza wartos¢ niz ustalona.

Twierdzenie 16.1.3 (MGF). Niech X ma rozktad wykladniczy z parametrem \. Wtedy dla
t<A

Dowdd.

= e Xe M dw
0
=A e~ "= g
0
A
At

]

Twierdzenie 16.1.4 (Lemat 8.5 P&C). Jesli X3, ..., X, sa niezaleznymi zmiennymi loso-
wymi spelniajacymi X; ~ Exp()\;), to

min(Xy,...,X,) ~ Exp (Z Ai)
i=1

02
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oraz \

P(X; = min(Xy,..., X)) = = —
Zj:l )‘J'

Dowod. Przeprowadzimy dowod dla n = 2, ktory pézniej prosta indukcjg mozna rozszerzy¢ na

n > 2.

P(min(Xy, Xs) > z) = P(X; >z A Xy > )
=P(X; >2) P(Xy > x)
o NT g hew

e—()\l-‘r)\z)x

a wiec min(X7, Xs) ~ Exp(A; + Ay). Teraz pozostaje pokazaé, ze:

Zatem liczymy:

) T2
P(Xl S Xg) = / / leXQ(Qfl,.Tz) d$1dl’2 =
T9=—00 Jr1=—00

/ T () / Y pe (o) dadas =

2=—00 1=—00

/ Npe A2t / e M dyyday =
x9 x1=0
/ —)\21'2/ —/\1:131 dIldLUQ —
xo=0 =0
—)\ T 22 —1 -1z
>\1>\2 e —e M) dxy =

0)\1

1 -1
>\1)\2/ e 22 ( N e~ MTe )\—160) dre =

)\1)\2/ 7)\2:v2 67)\1332 — 1) dLIZ'Q =

_ 2/ e~ A2T2 (e—)\1$2 _ 1) day =
x2=0

oo
_)\2/ e~ M2t AT _ o—Aaxn day =
xo=0

o
_)\2/ 6—9&2(/\2-0-)\1) . 6—>\2x2 day =
x2=0

_)\2 (/ 6*m2(>\2+>\1) dSCQ _/ 6*/\2902 dSC2> —
xo=0 xo=0

23
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oo -] o —1
-\ = omm(MAe) | P VT2 —
2((z2—oA1+A26 ‘

z9=0 )\2

)
5 ) =
)

—A( Ao B A+ A
-+ Xx2) A (A + A)

16.2 Funkcja Gamma i rozklad Gamma

Definicja 16.2.1. Funkcja gamma nazywamy funkcje:

o0 d oo
['(a) = / pe T = / 2" e " dx
0 x 0

dla a > 0. Powyzsze dwie notacje sa rownowazne, my bedziemy korzysta¢ z tej pierwszej.
Pare faktow o funkeji gamma:

Fakt 16.2.1. I'(1) = 1

Dowdd.

Fakt 16.2.2. V,-o'(a + 1) = al'(a)

Dowdad.

MNa+1)= / e " dr = [—x“e‘ﬂgo + a/ 7" te ™ dz = 0+ al'(a) = al'(a)
0 0

Fakt 16.2.3. V> I'(n) = (n — 1)!
Wynika to bezposrednio z poprzedniego faktu.

Definicja 16.2.2. Moéwimy, ze ciagta zmienna losowa ma Rozklad Gamma 7z parametrem

(a,1), jezeli jej funkcja gestosci jest rowna:

f(x) = mﬂﬁae%é

o4
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Wtedy:
<1 d 1 o d 1
/ et = —/ Pt = ['(a) =1
o I(a) z  I(a) Jo x

Zatem jest to poprawny rozktad.
Definicja 16.2.3. Dla X ~ Gamma(a, 1) oraz A > 0 definiujemy Y ~ Gamma(a, \) jako

X
y=2
A

Twierdzenie 16.2.1. Funkcja gestosci Y ~ Gamma(a, A) jest rowna

@) = s Oae ™

Dowdd. Niech X ~ Gamma(a,1),Y = . Liczymy gestosc

dx 1 1 1
— N ) \y)® —)\y_)\: )@ -y~
fr(y) = fx(x) a4 F(a)( y)'e N F(a)( y)e ;
O
Fakt 16.2.4.
Gamma(1,1) = Exp(1)
Gamma(1, \) = Exp(})
Twierdzenie 16.2.2. Niech X,..., X, - niezalezne zmienne losowe o rozkladzie wyktadni-

czym z parametrem A. Wtedy
X;+ ...+ X, ~ Gamma(n, \)

Dowadd. Skorzystamy z twierdzenia [28.4.1] Policzymy funkcje tworzaca dla sumy X; oraz dla
Y ~ Gamma(n, \).

A—t

=3 — - T - (12

i€[n] i€[n]

My, (t) = E[e"] = / e Ae ™M dr = A
0
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Obie funkcje tworzace sa réwne, wiec zmienne X i Y maja ten sam rozktad. m

o6



Pytanie 17

(8.3.2). Problem kul i urn ze wzmocnionym feedbackiem.

17.1 Kule 1 urny z feedbackiem

Jak zwykle, zanim zaczniemy to pokazemy pomocniczy lemat:

Lemat 17.1.1. Niech X bedzie dowolna zmienna losowsa ze skoniczona wartoscia oczekiwana,
tj. E[X] € R. Wtedy
P(X <o00)=1

Dowadd. Korzystamy z nieréwnosci Markowa

E
P(X >n) < ELX]
n
Zatem Elx
lim P(X >n) < lim u:0
n—oo n—o0 n

]

Kule i urny jakie sa kazdy widzi. Rozwazmy sobie jednak zabawny model, w ktérym mamy
tylko dwie urny ale z takim twistem, ze im wiecej kul jest w urnie, tym wicksza szansa na to,

ze wrzucimy tam kolejna kule.

Konkretniej - jesli w pierwszej urnie jest x kul a w drugiej y to prawdopodobienstwo, ze kolejna

kula trafi do pierwszej urny wynosi
:L‘p

xp—f—yp

a do drugiej
yp
xP + yP

dla ustalonego p.

Bedziemy sie zajmowaé¢ p > 1 tzn. wiecej kul dostaje ciezsza urna.
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Twierdzenie 17.1.1. Dla dowolnego p > 1 oraz dowolnych warunkéw poczatkowych, z praw-

dopodobieristwem 1 od pewnego momentu kule wpadaja tylko do jednej urny.

Dowdd. Przyjmijmy, ze w obu urnach na poczatku jest po jednej kuli, uprosci to dowod, a

rozumowanie pozostaje takie same.

Rozwazmy inny, cho¢ podobny, proces. Kazda urna dostaje wtasny, niezalezny licznik, ktory

odlicza czas do przyjscia kolejnej kuli do tej konkretnej urny.

Jesli w pierwszej urnie jest x kul to czas oczekiwania na kolejna wynosi 7)., ktére ma rozktad

wykladniczy z parametrem xP.
Podobnie dla drugiej urny — jesli jest w niej y kul to mamy zmienng U, z parametrem y?.

Zauwazamy teraz fajna rzecz — prawdopodobieristwo, ze kolejna kula laduje w pierwszej urnie

wynosi doktadnie
‘%’p

TP+ yP

a w drugiej
yp
xP +yP

Czyli nasz nowy proces jest taki sam jak oryginalny, c6z za zbieg okolicznosci.

Definiujemy czasy nasycenia — opisuja one po jakim czasie liczba kul w urnach jest dowolnie

R-YT
i=1

B-YU
=1

Mozemy tak zrobi¢, bo E[T;] = E[U;] = &, a poniewaz p > 1 to E[F}] oraz E[F;] sa skoticzone.

P

duza.

Tutaj nalezy uwazac ale ksigzka Wam tego nie powie. Ot6z a priori nie wiemy, ze jesli zmienna
ma skoniczong oczekiwana to z prawdopodobienistwem 1 zmienna przyjmuje skoniczong wartosc.

My sie powolujemy na lemat dzieki czemu wiemy, ze wartosci Fy, Fy sa skoriczone.
Co wiecej, z prawdopodobienistwem 1 sa rézne.
Bez straty ogoélnosci, przyjmijmy, ze 5 > Fy. Oznacza to, ze dla pewnego n

n+1

zn:Ul < Fi < ZU’L
=1 =1

a to z kolei oznacza, ze dla wystarczajaco duzych m

o8
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W takim razie, dla odpowiednio duzych m pierwsza urna zawiera m kul a druga urna zawiera
jedynie n kul, czyli z prawdopodobienistwem 1 druga urna utkneta na posiadaniu n kul, a to

jest to co chcielismy pokazac. O]

29



Pytanie 18

(8.4). Proces Poissona. Definicja. Prawdopodobienstwo pojawienia sie n
zdarzenn w ustalonym odcinku czasowym dlugosci ¢ (Twierdzenia 8.7 i

8.8).

18.1 Proces Poissona

18.1.1 Definicja

Definicja 18.1.1. Stochastycznym procesem liczacym nazywamy [proces stochastyczny]

{N(®),| t >0}

spetniajacy
1. N(t) € Ny
2. Vst N(s) < N(t)

Intuicyjnie: N(t) mowi ile jakichs zdarzen zaszto od momentu rozpoczecia procesu do chwili ¢,

a dla s <t liczba zdarzen ktore zaszty w przedziale czasu (s, t] to N(t) — N(s)

Definicja 18.1.2. Procesem Poissona z parametrem A\ nazywamy stochastyczny proces
liczacy {N(t) |t € R,t > 0} taki, ze:

1. N(0)=0

2. Proces ma stacjonarne i niezalezne przyrosty, tzn.
2a. Stacjonarnos$c: Vs> zmienne N(s) oraz N (s +t) — N(¢) maja taki sam rozklad
2b. Niezaleznos¢: Vi, <4y<ty<t, zmienne N(to) — N(ty) oraz N(t,) — N(t3) sa niezalezne

3. Prawdopodobienistwo jednego zdarzenia w malym przedziale dtugosci t zbiega do A

hmw:)\

t—0 t
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4. Prawdopodobienstwo wiecej niz jednego zdarzenia w matym przedziale zbiega do zera

L POV > 1)

t—0 t

=0

18.1.2 Zwiazek z rozkladem Poissona

Powyzsza definicja nie jest jedyna mozliwa definicja procesu Poissona. Okazuje si¢, ze mozemy
skorzysta¢ tez z nieco wygodniejszej definicji bez warunkéw 3. i 4., ale za to korzystajacej z

rozktadu Poissona.
Pokazemy teraz dwa lematy, ktére dadzg nam rownowaznosé miedzy dwoma definicjami.

Twierdzenie 18.1.1 (Twierdzenie 8.7 P&C). Niech {N(t) | t > 0} bedzie procesem Poissona
z parametrem \. Wtedy dla dowolnego ¢t > 0 oraz n € N

P,(t) = P(N(t) =n) = e—At%

Dowdd. Zaczynamy od policzenia Py(t); dowod bedzie indukeyjny.

Zauwazmy, ze 7 niezaleznosci przyrostéw mamy

(NV(
=P(N(t)=0AN(t+h)—N(t)=0)
— P(N(t) = 0)P(N(t+h) — N(t) = 0)
= P(N(t) = 0) P(N(h) = 0)
= Po(t) Po(h)

Robimy wiec pierwsza rzecz, ktora nam przychodzi do gtowy tj. liczymy pochodna FPy(t), a co.

Py(t + h) — Py(t)

Py(t) = lim
: Py(h) —1
= }111_% Py(t) - ——
= lim Py(t) - (1—P(N(h)=1)— P(N(h) > 1)) — 1
h—0 n
i —P(N(h)=1) P(N(h)>1)
= (- (FRER=D PO = 10))
= . P(N(h) =1) P(N(h) > 1)
_PO().(_}LIL% - —}}gg} d )
=Dy(t) - (=A=0)

Wyniki poszczegélnych limeséw biora sie z wlasnosci 4 1 5 procesu Poissona.
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Mamy zatem réwnanie rézniczkowe

Pj(t) = —\Ry(t)
P(t)
A~

Catkujemy po ¢ i dostajemy

PO (t) — e—)\t-i-C

Poniewaz Py(0) = 1 to C' = 0, czyli Py(t) = e~*. Tym samym baze indukcji mamy udowod-

niona.

Podobnie zabawny motyw dzieje sie gdy obliczamy kolejne P, (t). Na poczatek zaobserwujmy

jednak jedng rzecz.

Fakt 18.1.1.

k=0

Dowad. Jesli wiemy, ze w czasie t 4+ h zaistnialo n zdarzen, to wiemy, ze jakies k (by¢ moze 0)
zdarzen musiato zaistnie¢ w czasie h, a wiec n — k zdarzen zaistniato w czasie t. Aby policzy¢
prawdopodobienstwo takiej sytuacji wystarczy wymnozy¢ 2 takie prawdopodobienstwa (bo
niezaleznosé) a z racji tego ze kolejne sktadniki sumy opisuja zdarzenia ktore sg roztaczne to

zsumowanie jest legalne. O]

Korzystajac z wyzej wymienionego faktu, mamy:

(t+h) = ank (h)

= Po(t) - Bo(h) + Pua(t) - Pu(h) + 3 Pooi(t) - P(N(h) = F)

k=2

ZrobiliSmy tu bardzo sprytna rzecz — mianowicie rozbiliSmy sume na trzy czesci tak, aby przy
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liczeniu pochodnych wszystko nam sie tadnie zwineto.

P _
o (t+h) — P,(t)
h—0 h

— g (P01 Fl8) =) o) PAN(R) = )+ S (a0 PV
h—0
i [ 22 (Bo(h) = 1) B (t) - P(N(h) = P(N(h) = k)
= firg ( h h '+ Z Frill h
B . (Py(h)—1 P(N
_Pn(t)’lllir(l)(T)—i—Pnl hm( )—i—ZPnk llzlir(l)<
) 1—-P(N(h)=1) — )>1 1
N e )+Pn_1<t>-x+zpn_k<t> 0
- . P(N(h)=1) . P(N(h)>1)
R e e I e AR
= —AP,(t) + AP,_1(t)
Znowu dostajemy réownanie rézniczkowe
Pl (t) = =AP,(t) + AP, _1(t)
P/ (t) + AP, (t) = AP, _1(t)
eM(P(t) + AP, (1)) = AeMP,_(t)
NP (t) + eMAP,(t) = AeMP,_1(t)
i(e’\t P,(t)) = XeM P, (t)
dt
I z zalozenia indukcyjnego:
At YA N ()‘t)nil _ A g
AP, q(t) = Xe™ -e -1 (=1
Catkujemy obustronnie:
d At
(MPu(1) dt = P (1) + C
2\ tn—l P . A" tn 2\
/ o T o '/7f ==y T T

Definiujemy C' = Cy — C'; by musie¢ mniej my$le¢ o statych:
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A"
NP (t) + Cy = ] + Oy
A"
eMP,(t) = —+C—Cy
n.
A"
eMP,(t) = —+ C
n.
AT
Py(t) = e M+ Ce™
n.

Wiemy, ze P,(0) = 0, zatem C' = 0. W takim razie:

A" ML)
n! n!

]

Twierdzenie 18.1.2 (Twierdzenie 8.8 P&C). Niech {N(¢) | t > 0} bedzie procesem stocha-

stycznym liczacym takim, ze
1. N(0)=0
2. Proces ma niezalezne przyrosty

3. Vi P(N(s+1) — N(t) = n) = e s

n!

Wtedy jest to proces Poissona z parametrem .

Dowdd. Pokazujemy co nastepuje z definicji [18.1.2
1. N(0) =0 z zalozen

2. Niezalezno$é i stacjonarnosé przyrostow rowniez bezposrednio z zatozen

3.
P(N(t) =1 “hsal
hmM lim e = lim e M = A
t—0 t t—0 t t—0
4.
> — =0) — =
P POV >2) 1 P(N(1) = 0) — P(N(1) = 1)
t—0 t t—0 t
1 — €—>\t e—)\t&
= lim 1
t—0 t
RSy
— lim — lim de ™™
t—0 t—0
/\ — At
—lim 2 A =A—A=0
t—0 1
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(8.4.1). Proces Poissona. Rozktad czaséw pomiedzy zdarzeniami (Twier-
dzenia 8.9, 8.10 i 8.11).

19.1 Miedzyczasy

Niech X; to czas pierwszego zdarzenia, a X; dla i > 2 to czas pomiedzy (i — 1)-szym a i-tym

zdarzeniem - dalej nazywane miedzyczasami.

Twierdzenie 19.1.1 (Twierdzenia 8.9 i 8.10 P&C). Niech {N(t) |t > 0} bedzie procesem
Poissona z parametrem A. Wtedy miedzyczasy sa niezalezne i maja rozktad wykladniczy z

parametrem A.

Dowad. Pierwsze pokazmy, ze jest to prawda dla X,
P(X; >1)=P(N(t)=0) =M

Jest to dopelnienie dystrybuanty zmiennej o rozktadzie wyktadniczym z parametrem .

A teraz pokazmy, ze jest to prawda dla X;, 7 > 1

P(Xz >t ’ (Xo,Xl, . 7Xi—1) = (to,tl, R >ti—1)) = P(N <i t]> — N(i%) = 0)
=P(N(t;) =0) = e

A wiec X; tez ma rozktad wykladniczy z parametrem A, i jest niezalezne od wartosci poprzed-

nich miedzyczasow. O

Twierdzenie 19.1.2 (Twierdzenie 8.11 P&C). Niech {N(¢) |t > 0} bedzie stochastycznym
procesem zliczajacym takim, ze

1. N(0) =0

2. Miedzyczasy sa niezalezne i1 wszystkie maja rozktad Exp(\)
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Wtedy proces ten jest procesem Poissona z parametrem A

Dowdd. Pokazemy kolejne wtasnosci z definicji [18.1.2

1.

N(0) = 0 z definicji

2a. Stacjonarno$¢: aby pokazac, ze rozklad N(s +t) — N(s) jest taki sam jak rozklad N(¢)

2b.

zrobimy te sama sztuczke co przed chwilg - w chwili s resetujemy ostatniag zmienng.
Wszystko teraz dzieje sie na przedziale dtugosci ¢ bez zadnych zaleznosci od tego co byto

wezesnie], zatem rozktad liczby zdarzen musi by¢ taki sam jak rozktad N(t)
Niezaleznos¢: wezmy dowolne dwa przedziaty [b,a| N [d, c] = &, przy czym d > a

W chwili d ,toczy sie” pewna zmienna X liczaca czas miedzy dwoma zdarzeniami. Mozemy
ja ,zresetowa¢” albo bardziej formalnie warunkowaé si¢ po tym, ze X > ¢ gdzie ¢ jest

czasem od poprzedniego zdarzenia do chwili d.

Rozktad X pod warunkiem, ze X > t jest wyktadniczy z parametrem A i jest niezalezny
od tego co si¢ dziato przed d, zatem wszystko co zarejestrujemy na przedziale [d, c] jest

niezalezne od zdarzen na przedziale [b, a].

Niech X; bedzie zmienng opisujaca czas do pierwszego zdarzenia, a Xy od pierwszego
zdarzenia do drugiego. Widzimy, ze P(N(t) = 1) = P(X; <t A X, + X5 > 1)

Poniewaz X1, X5 maja rozktad wyktadniczy a X; + X5 nie jest specjalnie tadnym tworem,

to bedziemy chcieli poradzi¢ sobie nieco inaczej.
Skorzystamy zatem z twierdzenia o trzech funkcjach aby udowodnié¢ zadana granice.

Nasze oszacowania beda wygladaty nastepujaco:

P(X, <tAXy>t) < P(N(t)=1) < P(X; < 1)

Ograniczenie od dotu jest na pewno mniej prawdopodobnym zdarzeniem — jesli X; <
t AN Xy > t to na pewno N(t) = 1), ale nie uwzglednia ono sytuacji kiedy X, Xp <
tA X1+ X >t

Podobnie oszacowanie gorne — warunek jest konieczny, ale nie wystarczajacy, zatem zaj-

dzie z wiekszym prawdopodobienstwem.

Mozemy zatem policzy¢ granice ograniczen.
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Ograniczenie dolne:

lim = lim
t—0 t t—0 t

— lim (1 — exp(—At)) exp(—At)
t—0 t

exp(—\t) — exp(—2Xt) ::{0]

0
= lim —Aexp(—Az) + 2\ exp(—2Azx)

t—0

= lim
t—0 t

— —A+22= )

Ograniczenie gorne:

lim P(X; <t) _y 1 — exp(—At) _ [9]
t—0 t t—0 t 0
= lim Aexp(—X\t) = A
t—0

PINW=D) — ) Fajnie
; : :

Obie granice wyszty nam A, zatem lim; .

4. Ostatni warunek szacujemy niemal identycznie jak poprzedni.
Podobnie zauwazamy, ze 0 < P(N(t) > 1) < P(X; <t A Xy < t) — to, ze oba czasy sa
mniejsze niz t nie oznacza jeszcze, ze ich suma rowniez taka jest, zatem jest to warunek

konieczny, ale nie wystarczajacy.

t—0 t t—0 t
—lim (1 —exp(—=At))(1 — exp(—At))
t—0 t
1 +exp(—2Mt) — 2exp(=At) [0]
~ o

= lim
t—0

= lim —2\ exp(—2At) 4+ 2\ exp(—At)
t—0

=-22+2X=0

Wyszla nam granica jaka chcieliSmy, a wiec z twierdzenia o trzech funkcjach

co konczy dowdd.
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Pytanie 20

(8.4.2). Scalanie i rozdzielanie procesow Poissona (Twierdzenia 8.12 i
8.13).

20.1 Scalanie i rozdzielanie procesé6w Poissona

Definicja 20.1.1. Mowimy, ze procesy Poissona {Ni(t),|t > 0},{Nz(¢),| t > 0} sa nieza-

lezne jesli V,, Ni(z) i Na(y) sa niezalezne.

20.1.1 Scalanie
Ta prostsza czesé.

Twierdzenie 20.1.1 (Twierdzenie 8.12 P&C). Niech Ny, Ny beda niezaleznymi procesami Po-
issona z parametrami A1, Ao. Wtedy N (t) = Ni(t)+ N2(t) jest procesem Poissona z parametrem

A1 + A2 a ponadto kazde zdarzenie procesu N przyszio z procesu Ny z prawdopodobienistwem

A1
A1+

Dowadd. Pierwszy warunek mamy za darmo. Zeby pokazaé niezalezno$é przyrostow, musimy

zauwazy¢ tylko ze dla t; < ty < t3 < t4 mamy:
N(ts) — N(t1) = Ni(ta) — Ni(t1) + No(te) — No(ty)

N(ty) — N(t3) = Ni(ts) — N1(t3) + Nao(ts) — Na(ts)
a N1 i Ny sa niezalezne z zalozenia.

Zauwazamy, ze skoro Ni(t), No(t) miaty rozktad Poissona, to Ni(t)+ No(t) rowniez ma rozkltad
Poissona, tyle, ze z parametrem A\; + Ay, zatem otrzymujemy proces Poissona z parametrem
A1+ Ao

Druga czesé tezy wynika wprost z tego, ze czasy miedzy zdarzeniami maja rozktady wyktad-

nicze. O
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20.1.2 Rozdzielanie
Ta smutniejsza czesé.

Twierdzenie 20.1.2 (Twierdzenie 8.13 P&C). Niech N bedzie procesem Poissona z para-
metrem \. Kazde zdarzenie jest niezaleznie typu 1 z prawdopodobienistwem p oraz typu 2 z

prawdopodobienstwem 1 — p.

Wtedy zdarzenia typu 1 tworzg proces Poissona N; z parametrem Ap a typu 2 proces Poissona

Ny z parametrem A\(1 — p). Ponadto, te dwa procesy sa niezalezne.

Dowdd. Niezaleznosé i stacjonarnosé dziedziczymy z N, tak samo N;(0) = 0. Policzymy zatem

j=k
— (] e ()
:Z (k>pk (1_p)g ko oAt <j|)
i=k
— e*/\pt (Apt)k L= A(1-p)t i ()‘t(l _p))j_k
K ]
_ G—Apt ()\pt)k . 6—/\(1—p)t . 6)x(l—p)t
k!
—Apt | (/\pt)k
k!

Dostalismy rozktad Poissona z parametrem Apt, czyli Ny jest procesem Poissona z parametrem

Apt. Tak samo pokazujemy Ns.
Pozostaje pokazaé niezaleznosé tych procesow. Najpierw pokazujemy, ze Ni(t) oraz Ny(t) sa
niezalezne.

P(Ni(t) =n A Ny(t) =m) = P(N(t) =n+mA No(t) =m)

_ et (”+m>pn.(1_p)m

(n+m)! m
e M (/\t)n ) ()‘t)m n m
- n!-m! - (1=p)
e Opt)n 0P (A(1 = pey”
B n! ' m!

— P(Ny(t) = n) - P(Ny(t) = m)

Wypadaloby jeszcze pokazaé, ze dla dowolnych t,u N;(t) oraz No(u) sa niezalezne. Poniewaz

rozumowanie jest analogiczne, to zatézmy, ze t < u.

Zauwazamy bardzo odkrywcza rzecz, mianowicie Na(u) = No(t) 4+ (N2(u) — No(t)) Pokazalismy
juz, ze Ni(t) oraz Ny(t) sa niezalezne, wiec wystarczy pokazac, ze Ni(t) oraz No(u) — No(t)

tez sa niezalezne. A tak jest, dlatego, ze oryginalny N byt procesem Poissona i rozdzielanie
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robiliSmy niezaleznie, wiec to ile zdarzen z przedziatu (t,u) wpadlo do Nj jest niezalezne od
Ni(t). O
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Pytanie 21

(8.4.3). Warunkowe czasy pojawiania sie zdarzen w procesie Poissona
(Twierdzenie 8.14).

21.1 Warunkowe czasy pojawiania sie zdarzen w procesie

Poissona

Lemat 21.1.1. Niech X; bedzie pierwszym miedzyczasem procesu Poissona N z parametrem

A. Zmienna X; | N (t) = 1 ma rozktad jednostajny na [0, ¢].

Dowdd.

. P(Ni<snN()=1 P(N(s)=1)-P(N(t)—N(s)=0)
PXi<sINO=D=—Fmm=1 - PIN{) =1)
67)‘5/\8 . efA(tfs) S
- e~ M\t Tt

O

Twierdzenie 21.1.1 (Twierdzenie 8.14 P&C). Niech {N (¢) : t > 0} bedzie procesem Poissona
z parametrem \. Niech T; bedzie czasem przyjscia i-tego zdarzenia. Przy warunku N (t) = n
rozktad (71, ..., T,) jest taki sam jak sort (X1, ..., X,), gdzie zmienne Xy, ..., X, maja rozktad

jednostajny na [0,¢] i sa niezalezne.

Dowdd. Oznaczmy (Yi,...,Y,) = sort (Xy,...,X,). Niech (i1,...,14,) bedzie permutacja [n].

Zauwazmy, ze zdarzenia postaci

sa roztaczne dla roznych permutacji (z doktadnoscia do zbioru miary 0 — moze by¢ tak, ze dwie

permutacje pasuja do naszej sytuacji, gdy dwie zmienne przyjety ta sama wartosé). Do tego
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wszystkie sa rownie prawdopodobne. Zatem mamy

P((Yi,....,Ya) < (s, 8) = > P(X;<...<X;,nX;, <s1N...NX;, <)

(7«'17~--’in)esn

S1 Sn 1 n
:n!P(X1§...§Xnﬂ(X1,...,Xn)§(51,...,5n)):n!/ / (—) du, ...du;
u1=0 Un=Un—1

t
nl [ on
:—n/ / du,, . ..du;.
t u1=0 Un=Un—1

Teraz musimy policzy¢ odpowiednia wartos¢ dla czasoéw przyjécia. Niech Z; oznacza i-ty mie-
dzyczas. Mamy

P((Ty,...,T,) < (s1,...,8,) NN (t) = n)

n—1 n
:P<21§810Z2§32—Z1ﬂ...ﬂZnSsn—ZZjﬂZnH>t—ZZj)

J=1 J=1

-1
s1 Sn—> 71 % [0 N
_ +1 .
= / .. / / Nl Al 2 % dzpq...dz
z1=0 2n=0 Z’ﬂ+1:t_2?:1 Zj

a7 X 2 a [ o
= e~ dz,...dz; = A'e™ du,, ... duq,
21=0 2n=0 u1=0 Up=Up—1

gdzie trzecie przejscie jest policzeniem najbardziej wewnetrznej catki (wychodzi A\"e=* co jest
stala wzgledem pozostalych calek, wiec wyciagamy to na przod), a pozniej podstawiamy u; =

2321 z; (catkujemy funkcje stala, wiec znaczenie ma tak naprawde tylko dlugos¢ przedziatu).

Wiemy, ze P (N (t) =n) = E_MTL(!’\ D" wiec prawdopodobienistwo warunkowe bedzie wynosilo:

AmemA P duy, .. dy
P((T177Tn) S (S]_,...,Sn) ’ N(t) :n): 1_0 n—Un—1

e~ M ()"

n!
n! [ sn
= — . du,, ...du;
tn "
u1=0 Un=Un—-1
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Pytanie 22

Naturalny proces losowy motywujacy gestos¢ rozktadu normalnego. Roz-
ktad normalny. Wtasnosci. Funkcja tworzaca.

22.1 Standardowy rozklad normalny

22.1.1 Wyprowadzenie
Rozwazmy sobie rozktad na R? o nastepujacych wtasnosciach:

e gestosé wokol kazdego punktu zalezy jedynie od odleglosci od srodka uktadu (w szcze-

golnosci rotacja nie zmienia rozktadu).
e wartosci wspotrzednych x i y sa od siebie niezalezne.
e ten rozklad jest ciggty.

Okazuje sie, ze istnieje tylko jeden taki rozktad (z doktadnoscia do stalej), nazywamy go stan-

dardowym rozkltadem normalnym. Oznaczamy go przez Z ~ N(0,1).

Zgodnie z definicja, gestos¢ zalezy jedynie od odlegloéci punktu od srodka uktadu wspoétrzed-

nych. Mozemy wiec to zapisa¢ jako:

F((@,) = 0) = F(Va?+ ) = g@)hly) = g(x)(y)

Ostatnie przeksztalcenie wynika z tego, ze nasza gestosé nie zalezy od rotacji, wiec mozemy

obrocié wszystko o 90 stopni. Dodatkowo, dla punktu (r,0) rownanie przyjmie postac:

f((r,0)) = g(r)g(0)

gdzie ¢(0) jest stata. Z tego powodu mozemy wstepnie zalozy¢, ze f = g a potem calosé

odpowiednio przeskalowaé¢. Tak wiec teraz mamy:

F(VaZ+32) = F@)f )
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Niech:
hz) = f(Ve)
Wtedy:
h(z?) = f(x)
h(@® +y*) = h(z®)h(y?)
Wz +y) = h(z)h(y)
Z ostatniego punktu mozna przez indkucje pokazaé, ze VnenVi, . a,erh(x1 + ...+ x,) =

h(zy)...h(x,) Niech h(1) = b. Korzystajac z poprzedniego faktu mamy, ze V,enh(n) = 0.

Teraz chcemy udowodnié¢ to samo dla liczb wymiernych:

h(§+"-+§> :h(m:bp:h(g)q

Gdzie na poczatku mamy doktadnie ¢ utamkow ’a’ w funkcji h. Przeksztatcajac ostatnia réwnosé

()
q

Na koniec chcemy udowodnié¢ to samo dla liczb rzeczywistych (co na wyktadzie chyba pomine-

otrzymujemy:

lismy). Z MFI pamietamy, ze kazda liczbe rzeczywista mozemy przyblizy¢ jakims ciagiem liczb

wymiernych, a bardziej formalnie:
Veerdg,r = lim g,
n—oo

Gdzie ¢, jest jakims ciagiem liczb wymiernym. Z potaczenia tego faktu i zalozenia o ciggtosci

funkcji h otrzymamy:

h(z) = h( lim qn) = lim h(gy) = lim b = plimn—ecdn — p

n—oo n—oo n—oo

Ustalmy:
b=¢e¢° = h(z) =e“

Teraz podstawiamy to do naszej funkcji gestosci, uwzgledniamy skalowanie i otrzymujemy:

f(z)=a-e

Gdzie ¢ < 0.

Przyjmijmy ¢ = —%. Teraz chcemy znalezé stata a. Oczywiscie chcemy, zeby pole pod nasza
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funkcja wynosito 1, wiec wystarczy obliczy¢ odpowiednia catke. Calki:

o 22
/ e 2z dz
nie jesteSmy w stanie tadnie rozwigza¢, wiec postuzymy sie takim trikiem:
o0 22 o0 42 S e 22442
/ e‘?dz-/ e_2dz:/ / e 2 daxdy
—0o0 —00 —0o0 —0o0
27 e’} 2
= / / e 2 -edrdf
0 0
27 [e'e]
= / / e “dudf
0 0
27
= / 1d0 =27
0

(Gdzie kolejno druga i trzecia rownosé to przejscie na wspotrzedne biegunowe, oraz podstawienie

u= § (dlatego przyjelismy akurat ¢ = —3 ). Dalej mamy:

o 2 1
e 2dz=V2T — a=—
/—oo V 27T

Yy
1 22 0.3
ya = 6_7
f( ) \/% 0.2
0.1

| x
Funkcja gestosci prawdopodobienstwa standardowego rozktadu normalnego wyglada jak dzban

dzwon.

22.1.2 Wlasciwosci

Twierdzenie 22.1.1. Wartos$¢ oczekiwana standardowego rozktadu normalnego wynosi 0, wa-

riancja wynosi 1.

Dowdd. Wartos¢ oczekiwana wynosi 0, poniewaz standardowy rozklad normalny jest syme-

tryczny wobec prostej OY Wariancja:
Var[Z] = E[Z?] - E[Z)* =E[Z%] =

poniewaz E[Z] =0
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calkowanie przez czesci

1 1 e
—Ete_t2/2|iooo + E/ €_t2/2dt =1

Poniewaz pierwszy wyraz jest rowny 0 a drugi jest to dystrybuanta na od —oo do oo wiec

wynosi ona 1. O

Definicja 22.1.1. Dystrybuante standardowego rozktadu normalnego oznaczamy jako ®, gdzie:

1 z 2
(I)<Z) = \/—2_71-/ e 2 dt

Oraz:
O(—z)=1—-P(2)

Ta catka generalnie nie jest do policzenia, jezeli trzeba skorzysta¢ z dystrybuanty to sa do tego

specjalne tabele wartosci

22.2 Uogo6lniony rozklad normalny

Definicja 22.2.1. Dla Z ~ N(0, 1) definiujemy (uogélniony) rozktad normalny X ~ N(u,o?)
jako
X=pu+oz
Twierdzenie 22.2.1. Dla X ~ N(u,0?) zachodzi
o EX]=p
o Var[X] = o2

o Fx(r)=®(%F)

_(e=w)?

o fx(z)= m}ge 202

Dowdd. Poniewaz zmienna losowa X z N(u,0?) ma ten sam rozklad co y + 0Z mamy ze
EX]=Eu+cZ]=pu+oE[Z] =pn

Var[X] = Var[oZ + u] = 0* Var[Z] = o°

() o) o)

o o o

et = (o) = (2(252)) = g(% [ dt>/ L
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Twierdzenie 22.2.2. Funkcja tworzaca momemty rozkladu normalnego N (p, 0?) wynosi

t202
MX (t) =€ 2 tut
Dowdd.

Mx(t) = E[e]

1 & _(@—w?
= e 202 dx
2710 J_o

1 /°° ( :r;2—2/w+u2—2a2tx)
= exp | — dx

V270 202
1 /OO 2 —2(u+ o)z + (u+ 02t)* — (pn + o%t)? + p?

= exp | — dx
2o 202

(u+ o%t)* — p? / _(e=(uto?0)?
=e T 22 dx
P ( 202 2’/T0'

p? + 2uo’t + ott? — p?
P 202

t22
:eﬂt"" 20-

Calka w 3 linii od dotu jest réwna 1, bo jest to calka po gestosci rozktadu N(u + o?t,0?). O

Twierdzenie 22.2.3. Niech X ~ N(u,0%),Y ~ N(uz,03) to niezalezne zmienne losowe.
Wtedy X +Y ~ N(uy + po, 0% + 03).

Dowdad.

M (t) = (M () My () = (5 0m) (5 ) =

2 (01+U2)
=€

+t(p1+u2)
O

Podobnie mozemy pokazaé, ze dla niezaleznych X; ~ N(0,0%), Xy ~ N(0,03) dostajemy
X1+ X5 ~ N(0,0% + 02) oraz X; — Xy ~ N(0,07 + 03).
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Pytanie 23

(9.3). Centralne Twierdzenie Graniczne. Dowod. Warianty mocniejszych
wypowiedzi.

23.1 Centralne Twierdzenie Graniczne

23.1.1 Podstawowa wersja

Intuicyjnie: Centralne Twierdzenie Graniczne moéwi, ze jak mamy niezalezne zmienne losowe
o takim samym rozktadzie, to dla liczby prob zbiegajacej do nieskoriczonosci rozktad sredniej
arytmetycznej tych wylosowanych wartosci bedzie zbiega¢ do rozktadu normalnego. Twierdze-

nie to uzasadnia wystepowanie w naturze rozktadu normalnego.

Definicja 23.1.1. Ciag dystrybuant F}, F5, ... zbiega w dystrybuancie do dystrybuanty F', co
oznaczamy jako F,, — F', jesli dla kazdego a € R w ktorym F' jest ciagta zachodzi:

lim F,(a) = F(a)

Twierdzenie 23.1.1 (Centralne Twierdzenie Graniczne). Niech {X;},  beda niezaleznymi
zmiennymi losowymi o takim samym rozkladzie, wartosci oczekiwanej p i wariancji 0. Niech
X, =1 S X, Wowezas dla dowolnych a, b

Var [)Tn]
Dowad. Pierwsze, przeksztalémy sobie troche nasz cel
E [EL] =

1 1
_ZXi] = — Var
n n

i=1

& 1 < 1
Var [Xn] = Var g Xi] =— E Var[X;] = —2n02 .
n n n
i=1 =1
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A wiec

)T”_E[)?"] Xo—Ht
limPla< ————= <b|=limPla<—2—.yn<bh

n—o0 m - n—00 o

Dalej, aby dowies¢ CTG, bedziemy musieli przytoczy¢ pomocne twierdzonko, ktorego (mamy

nadzieje) nikt nie bedzie musiat dowodzi¢:

Twierdzenie 23.1.2 (Lévy-Cramér). Niech {Y;},.y bedzie sekwencjg zmiennych losowych,
gdzie Y; ma dystrybuante F; i funkcje tworzaca momenty M;. Niech Y bedzie zmienng losowsg

o dystrybuancie F' i funkcji tworzacej momenty M. Jezeli dla kazdego ¢ zachodzi:

lim M, (t) = M(t)

n—oo
to dla kazdego t takiego, ze F' jest ciagta w t zachodzi

lim F,(t) = F(t)

n—oo

Dowadd. Mitzenmacher przytacza to twierdzenie bez dowodu; na wyktadzie go réwniez nie byto,

a wiec i my udowodnimy je poprzez zatozenie go jako aksjomat (haha). O

Przystepujemy teraz do dowodzenia CTG.

Definiujemy Z; = XZ—U_H Wowcezas Z; sa niezaleznymi zmiennymi losowymi oraz

E[ZA:E{X"‘“}=1-<E[Xi]—E[u]> L - =0

o o

Var[Z;) = E[Z?] - E[Z,) = E[Z] = Var[Z]| +E[Z]) =1+ 0*=1

)

Ponadto mamy, ze:

X, — noXi _ no Xiop "X — "7
_“.\/ﬁ_w.\/ﬁ_zl—#.\/ﬁ_\/_ﬁz Mzzzzl
o o o n ‘<= o Vn

Zeby zastosowaé teraz przywolane przez nas twierdzenie Levy’ego i tego drugiego musimy
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pokazaé, ze funkcja tworzgca momenty zmiennych losowych postaci

Yn — Z?:l ZZ
NG

zbiega do funkcji tworzacej momenty zmiennej losowej o standardowym rozktadzie normalnym.

Po zastosowaniu tego twierdzenia dostaliby$my juz teze Centralnego Twierdzenia Granicznego.

W takim razie, chcemy pokazaé

Y1 Zi 2
lim My, (t) = lim E[et v } —e7

n—oo n—oo

Niech My, (t) =E [etzﬂ bedzie funkcja tworzaca momenty zmiennej Z;. Zauwazamy, ze wowczas

funkcja tworzgca momenty zmiennej losowej 5—% wynosi

Poniewaz Z; sa niezalezne i maja ten sam rozktad mamy

My, (t) = M ;;1%(t) = <M5%(t))n = (Mzz- (%))n

Teraz wykonujemy magiczne zatozenie. Zdefiniujmy sobie, for no reason at all, funkcje L,
taka ze

L(t) =In MZi (t)

Dodatkowo, rowniez bez jakiejkolwiek przyczyny, policzmy sobie pierwsza i druga pochodna
L(0).

Zacznijmy od trywialnych obserwacji:

My (0)=1 = L(0) =0

L(0) = (M2 0) = g M5 0) = 1 = L~ 5[z =0
L”(O) _ MZ@'(O)M%(O) - (JMIZZ(O))2 _ MEZ(O) -0 _ E[ZZQ] —1

—_

(Mz,(0))?

Przypomnijmy, ze chcieliSmy pokazaé, ze

. . t\Y _ 2
Jin 0= i (v (7)) =
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po zlogarytmowaniu stronami

lim nl t t2
imnl|—)=—

Pytanie teraz co musimy zrobi¢ by wykazaé, ze ta granica tyle wynosi.

Jak wszyscy wiemy, kiedy nie wiadomo jak policzy¢ granice, to liczymy ja L'Hoépitalem. Za-
piszmy wiec sobie ten limit tak, by$my mogli uzy¢ tego twierdzenia (czyli zeby pojawil sie

symbol nieoznaczony 3).

n—oo n_l

No i lecimy z pochodnymi!

n—oo nL

. 2 Vn
= lim TP
n— 00 —§2TL 2
2 " t
2L (V—ﬁ>
= lim
n—o0 2
21
= lim
n—oo 2
t2
)
I w sumie to mielismy dowies¢. Ale fajnie. m

23.1.2 Warianty

Istnieja rozne warianty CTG, ktére maja swoje zastosowania w réznych sytuacjach. Ponizej

podajemy wypowiedzi dwoch takich wariantow.

W pierwszym wariancie usuwamy warunek na to, ze wszystkie zmienne X; musza mie¢ taki

sam rozktad, ale musimy za to doda¢ dwa dodatkowe warunki.
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Twierdzenie 23.1.3. Niech {X;}, .y bedzie ciagiem niezaleznych zmiennych losowych spel-
niajacych E[X;] = p; i Var[X;] = ¢2. Niech zachodzi

L. uso Vien P(1Xi| < M) =1

2. limy oo D5y 02 = +00.

Woéwcezas dla dowolnych a, b zachodzi

iy (Xi—
lim P <a <2 Xz m) b) = ®(b) — D(a)
n—oo f
Za to w drugim wariancie majac dodakowa informacje o trzecim momencie, mozemy wyznaczy¢

predkosé zbiegania do rozktadu normalnego

Twierdzenie 23.1.4 (Berry-Esséen). Istnieje taka stala C| ze dla kazdego ciagu niezaleznych
zmiennych losowych {X;}, . o tym samym rozkladzie ze skoiiczong wartoscig oczekiwang i i

wariancja o2 oraz dla p = E [|X; — ,uﬂ <ooiX,= L3 | X; zachodzi

P
<C-
= o /n
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Wprowadzenie sily dwéch wyborow

Pytania 24-26 wszystkie sa zwiazane z sita dwoch wyboréw i wymagaja wypowiedzi tych samych
twierdzen oraz modelu eksperymentu. Dodatkowo, czesciowo uzywaja tych samych oznaczen

oraz lematow. Aby unikna¢ powtarzania tych segmentow, sa one wszystkie obecne tutaj.

24.1 Wprowadzenie modelu eksperymentu

Rozwazmy wariant standardowego eksperymentu z kulami i urnami. Rzucamy n kul sekwen-
cyjnie do n urn i dla kazdej kuli symulujemy dwa rzuty. Kula trafia do tej urny z dwoch
wylosowanych ktora jest mniej wypelniona, a remisy rozsrzygamy dowolnie. Okazuje sie, ze

znaczaco zmienia to rozktad max(Xy,..., X,,), co pokazuje nastepujace twierdzenie

Twierdzenie 24.1.1. W opisanym powyzej modelu V,>1 35,y V1>, zachodzi

+(9a(1)> >1- -

nOé

Inlnn Inlnn
P — 1) < Xi,... X)) <
(M3 - 0ul1) < max(Xy. X) < T8

lub réwnowaznie

1
P(logyInn — O, (1) < max(Xy,...,X,) <logylnn+ O,(1)) > 1 - —

na

Dodatkowo, jesli symulujemy d rzutéw zamiast dwoch, w powyzszym wzorze zamiast In 2 jest
obecne Ind i musimy zamieni¢ O, (1) na jakies Oy, (1). Widzimy, Ze nie zmienia to bardzo
naszych ograniczen, a dowody tych wariantéw sa bardzo podobne, a wiec dla uproszczenia

nasze rozumowanie bedziemy przeprowadzaé¢ dla d = 2.

24.2 Lematy pomocnicze
Lemat 24.2.1. Dla Z ~ Bin(n, p) zachodzi

np

P(Z > 2np) <e 5
1 _np
P<Z < énp) <e s

Dowadd. Pierwsza nieréwnosc wynika wprost z punktu 2. z 6 = 1, a druga z punktu 2.
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Lemat 24.2.2. Niech X4, ..., X, to zmienne losowe, Y7, ..., Y, to binarne zmienne losowe, Y; =
fi(X1,..., X;) (jest wyznaczona przez X,...,X;) oraz Z ~ Bin(n,p) jest niezalezna od po-
przednich zmiennych. Jesli dla kazdego i € [n] oraz (z1, ..., x;_1) takiego, ze P((X1,..., X;—1) =
(x1,...,2,-1)) > 0 zachodzi

PY,=1|(Xy,...,Xi1) = (x1,...,2-1)) <p

to

P(iYi>k> <P(Z>k)

=1

Dowdd. (dla n = 3, dla wyzszych n analogicznie)

P(Yi+Ys 1 Ys> k) < P(Z+Ys+ Vs> k)
= Zl—i-YQ—i-Y},>k|X1—x1) P(X1:$1)
< Zl+ZQ+}/Eg>/{7’X1—LC1) P(Xlzdil)

= Z g P F 224Xy > k| (X0, X) = (21, 35))

P(X2 = X9 | Xl = xl) P(Xl = .flfl)
SZ P(Z1+ZQ+23>]{]‘ (Xl,XQ):(xl’x2>)
(z1,22)
) - P(X1 =1)
=> P(Zy + Zy+ Z3 > k)

(z1,22)

: P(X2 = X9 | Xl = 33'1) : P(Xl = .171)

=P(Zv+ 2o+ Z3> k)Y P(Xy =ay | Xy = 21)P(X) = 21)
(z1,22)

:P(Zl+ZQ+Zg>k)
[

Lemat 24.2.3. (Lemat dualny dla [24.2.2) Niech Xi,..., X, to zmienne losowe, Y1,...,Y},
to binarne zmienne losowe, Y; = fi(X1,...,X;) (jest wyznaczona przez Xi,...,X;) oraz Z ~

Bin(n, p) jest niezalezna od poprzednich zmiennych. Jesli dla kazdego i € [n] oraz (z1,...,z;_1)
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takiego, ze P((X1,...,X;-1) = (z1,...,2-1)) > 0 zachodzi

PY,=1](Xy,....Xio1) = (21,...,2i-1)) >p

to
P(ZYZ- > k:) >P(Z > k)
=1
a wiec tez
P(ZYi < k) <P(Z<k)
=1
Dowaod. Tak samo jak w poprzednim lemacie. O

24.3 Oznaczenia

Do dowodéw ograniczenia gérnego przez iteracje ograniczen oraz ograniczenia dolnego przyda-

dza nam si¢ funkcje pomocnicze. Dla t € [n] niech

e h(t) to wysokosé t-tej kuli, czyli liczba kul w urnie, w ktorej wyladowala ¢-ta kula zaraz

po jej wrzuceniu
e 1;(t) to liczba urn zawierajacych > ¢ kul zaraz po wrzuceniu ¢-tej kuli
e 1;(t) to liczba kul o wysokosci > ¢ zaraz po wrzuceniu ¢-tej kuli

Prosto widzimy, ze
Viem), tem) Vi(t) < p(t)

bo w kazdej urnie zawierajacej > ¢ kul jest przynajmniej jedna kula wysokosci > 1.
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Pytanie 24

Sita dwu wyboréw. Model eksperymentu, wypowiedzi twierdzen. Dowod
ograniczenia gornego (ten w ksiazce) przez iteracje ograniczen na praw-
dopodobienstwa warunkowe pewnych zdarzen.

W tej sekcji znajduje sie wylacznie dowdd ograniczenia géornego goérnego przez iteracje ogra-
niczen na prawdopodobienstwa warunkowe. Model eksperymentu oraz wypowiedzi twierdzen
znajduja sie w rozdziale 24]

25.1 Ograniczenie goérne przez iteracje ograniczen

Przejdzmy wreszcie do pierwszego dowodu ograniczenia gérnego twierdzenia [24.1.1] Tak na-

prawde bedziemy dowodzi¢ ze

P(max(Xy,...,X,) > log,Inn+ O(1)) < -
ne"

ale jak sie temu przyjrzymy to mozemy zauwazy¢, ze z odpowiednim o da nam to co chcemy.

Niech

n

5421
2

Bi+1: —ldla4§2§2*
n

1* zostanie zdefiniowane pézniej.

Lemat 25.1.1.
o
Biys = 221
a wiec
n
Bita < o

Dowdd. Przeprowadzmy dowdd indukeyjny. Dla ¢ = 0

n n

= 52041 — Bota

n
o= 1~ 91+l
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Jedli lemat zachodzi dla i to

2
2 —
. itd (222+1> n n n o
/Bi+5 =2 =2 n - 222(2i+1) - 22i+1+2 - 22i+1+1 - 6(i+1)+4

a wiec zachodzi tez dla i + 1 m

Zdefiniujmy teraz &; jako zdarzenie zachodzace jesli v;(n) < ;. Widzimy, ze

P(&,) = P<1/4(n) < Z) —1

bo oczywiscie > F kul moze mie¢ co najwyzej 7 urn.

Chcemy teraz wykazac, ze jesli & zaszlo, to prawie na pewno & tez zaszlo. Dla t € [n]

definiujemy binarna zmienna losowa Y;

. { 1 dlah(t) >i+1Ayt—1)<p;
t:

0 WpPDP.
Zauwazmy, ze dla (K7i,..., K;_1) bedacego zmiennymi losowymi reprezentujacymi urny do
ktorych trafity kolejne kule oraz (wy, ..., w;—1) takiego, ze Vicp—1w; € [n] zachodzi

B\

PYi= 1| (Koo Kit) = (@1 sr1)) < (;
Jest tak, poniewaz aby zaszto h(t) > i + 1 t-ta kula musi obiema symulacjami trafi¢ w urne
o przynajmniej i kulach, ale wiemy z v;(t — 1) < f3; ze takich urn jest co najwyzej 5; z n

mozliwych.

Jesli &; zaszto, to pip1(n) = Zte[n] Y;, poniewaz z & wiemy, ze v;(t — 1) < f3; jest prawdziwe
dla kazdego t, a wiec Y; =1 <= h(t) > i+ 1, a wiec suma Y; zlicza liczbe kul o wysokosci
> 1+ 1, co jest doktadnie definicja p;11(n).

Niech p; = (%)2 Z lematu [24.2.2| dostajemy

P> Yi>k| <P(Bin(n,p;) > k)

ten]

Teraz przy uzyciu tego pokazemy, ze P(=&;11) jest male, jezeli & zaszlo. Najpierw policzymy
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prawdopodobienstwo warunkowe:

P(=€i1 | &) = P(viya(n) > Biy1 | &)
P(piv1(n) > Biv1 | &)

IN

=P > Yi>2m|&

te[n]

Tutaj w ostatniej rownoéci robimy dwie rzeczy: korzystamy z faku, ze jezeli &; zaszlo, to ;1 =

Zte[n] Y;, oraz z definicji 8,41 1 p; podstawiamy ;11 = 2np;

P <zt€[n] Y, > 2Tlpi>
P(&)

< P(Bin(n, p;) > 2np;)
N P(&;)

P> Yi>2np| &

ten]

W drugiej nieréwnosci korzystamy z faktu z lematu [24.2.2] Przeksztalacajac dalej:

P(Bin(n,p;) > 2np;) < 1
P(&;) T e T P(E)

< -
T on® P(gl)

Na koniec korzystamy z nieréwnosci Czernowa (lemat [24.2.1), oraz zakladamy, ze np; >

3aln(n). Ostatecznie otrzymujemy:

1

=& )< —
P( 1+1 | gl) = nap(gz)

Teraz mozemy ograniczy¢ P(—=&;11):

P(=&iy1) = P(—=&i1a1 | &) P(&) + P(=&ip1 | =&) P(—E)
< P(=&i1 | &) P(&) + P(=&)

Gdzie na koricu ponownie korzystamy z zatozenia, ze np; > 3aln(n). Pokazujemy przez induk-

cje:
1 1 7 1+ 1
P(=€ip1) < — +P(=&) < — + — = —
n n n n

Poniewaz wiemy, ze P(&,) = 1, zatem P(=&,) =0 < =%
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Teraz wracamy do i* i definiujemy je jako minimalne ¢ takie, ze np; < 3alnn. Mozemy zauwa-

zy¢, ze to co pokazaliémy z indukcji jest prawdziwe jedynie dla ¢ < i*, lecz dziata jeszcze dla

i
nO{

P(=&;+) bo pracowaliémy na &1, a wiec P(=&;+) <
Chcemy jeszcze znalezé i* wiec rozwazamy nastepujacy ciag nieréwnosci:
np; < 3alnn

Podstawiamy p; = (&)2

n

n

2
n<@> < 3alnn

o . . - s 2 . . n
Tworzymy mocniejsza nierownosé, korzystajac z faktu, ze g; < FT

n 2
1—4

n( 2 < 3alnn
n

221’—4.2 _ 221—5

3alnn
1

Logarytmujemy stronami i podstawiamy ¢ =
c-Inn —c-In(3a) —logy,Inn < 272
Ponownie tworzymy mocniejsza nieréwnos¢ przez zwiekszenie lewej strony:
c-lnn <273
Znowu logarytmujemy stronami:
Inc+logyInn <7 —3

Ostatecznie otrzymujemy

logoInn+ O(1) <i = i* <logyInn+ O(1)
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Znajac i* mozemy dalej ogranicza¢ prawdopodobieristwo, ze v;(n) bedzie duze dla i > *
P(viq1(n) > 9alnn | £+) < Pluyi1(n) > 9alnn | &)

=P ZY} > 9alnn | &«
t€[n]

P(Bin(n,p;) > 9alnn)
- P(&:)
< P (Bin(n, 2222) > 9 Inn)
- P(&:)
<t
~ neP(&+)

Pierwsze przeksztalcenia robimy tak samo jak wyzej i korzystajac z np; < 3alnn. Ostatnia

nieréwno$¢ wynika z Czernowa:

ol

2\ 3alnn
P(X > (1+2)-3alnn) < (e_) < (e*

3alnn 1
7 )

7 tego otrzymujemy:

P(vi41(n) > 9alnn) <

Zostalo nam ostatnie warunkowe ograniczenie:

P(Bin(r, (222)%) > )
P(vi41(n) <9alnn)
nﬂ(9alnn)2/8
~ P(i=41(n) < 9alnn)
(9 Inn)*
~ nPP(rp1(n) < 9alnn)

P(pirso(n) > B | vip1(n) < 9alnn) <

Gdzie w pierwszej nierownosci jako p dla w rozktadzie dwumianowym podstawiamy prawdo-
podobienstwo, ze dwukrotnie trafimy do wystarczajaco wypetionych urn. Druga nieréwnosc¢

to union bound.
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Teraz mamy wszystko, zeby pokaza¢ gérne ograniczenie.

P(viy242a(n) = 1) < P(pist2124(n) > 1)
P(pi-12(n) > 2a)
P

(i2(n) > 2a | vpg1(n) < 9alnn) P(v41(n) < 9alnn)

IN

IN

+ P(vi=41(n) > 9alnn)
(9alnn)*™ i+ +1
+

n2a ne

Gdzie ostatnia nieréwnos¢ zachodzi dla odpowiednio duzego n.
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Pytanie 25

(%). Sita dwu wyboréw. Model eksperymentu, wypowiedzi twierdzen. Do-
wod ograniczenia gornego przez drzewa sSwiadczace.

W tej sekeji znajduje si¢ wytacznie dowdd ograniczenia gornego przez drzewa swiadczace. Model

eksperymentu oraz wypowiedzi twierdzen znajduja sie w rozdziale [24]

26.1 Ograniczenie goérne przez drzewa swiadczace

Dowdd ograniczenia gérnego przez drzewa Swiadczace wzorowany [artykutem.

Definicje drzew $§wiadczacych

Jak poprzednio, rzucajac kule losujemy jednostajnie d > 2 urn i wrzucamy kule do najmniejsze;j.

Bedziemy dalej nazywac i-ta wylosowana urne dla kuli b ¢-ta lokacja kuli b.

Definicja 26.1.1. Drzewo $wiadczace rzedu L to pelne, ukorzenione drzewo d-arne wy-
sokosci L. Kazdy wierzchotek w drzewie reprezentuje pewna kule, niekoniecznie unikalng -
kula moze by¢ reprezentowana przez wiele wierzchotkéw. Dodatkowo, dla kazdego wierzchotka
v niebedacego lisciem, kule odpowiadajace dzieciom v musza juz znajdowaé¢ sie w urnach w

momencie rzucania kuli v.

Ogolna idea dowodu bedzie nastepujaca; rozwazmy wszystkie drzewa $wiadczace. Powiemy za
moment, co oznacza ze jakie$ konkretne drzewo $wiadczace jest aktywne, a nastepnie pokazemy,
ze jesli w ktorejs z urn jest duzo kul, to ktores z drzew §wiadczacych jest aktywne. Tym samym
prawdopodobienistwo, ze ktoras urna ma duzo kul jest ograniczone przez prawdopodobienistwo,

ze jest jakies aktywne drzewo Swiadczace.

Definicja 26.1.2. Dodajmy sobie dodatkowsa intepretacje dla struktury dowolnego drzewa

Swiadczacego.

e Krawedziozdarzenie ("edge event”) - dla krawedzi e = (u,v), gdzie v jest i-tym dziec-
kiem u, krawedz e okresla zdarzenie, ze i-ta lokacja kuli u jest taka sama, co ktoras z

lokacji kuli v.


https://dl.acm.org/doi/10.1145/792538.792546
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e Lisciozdarzenie ("leaf event”) - lis¢ drzewa $wiadczacego v okresla zdarzenie, ze kazda
z d lokacji kuli v wskazuje na urne, gdzie znajduja sie juz co najmniej 3 inne kule, ktore

nie sy zareprezentowane wierzchotkami drzewa.

Definicja 26.1.3. Krawedz lub lis¢ drzewa $wiadczacego sg aktywne, jesli podczas rzucania
kul do urn zaszly odpowiadajace im krawedzio- lub liciozdarzenia. Drzewo swiadczace jest

aktywne, jesli wszystkie jego krawedzie i liscie sa aktywne.

Konstrukcja drzew §wiadczacych

Z poczatku bedziemy zaktadaé, ze zdarzenia opisywane przez drzewa swiadczace sa niezalezne
od siebie. W szczegodlnosci, rozwazamy tylko drzewa, gdzie wierzchotki reprezentuja parami

rozne kule - ta prostsza wersja postuzy poézniej do pelnego dowodu.

Lemat 26.1.1. Jesli ktoras z urn posiada wiecej niz L + 3 kule, to istnieje aktywne drzewo

Swiadczace rzedu L.

Dowdd. Niech urna  ma co najmniej L + 4 kule. Skonstruujemy aktywne drzewo nastepujaco.

Niech korzen reprezentuje ostatnio wrzucona kule z x. Zauwazmy, ze kazda z d lokacji tej
kuli wskazuje na urne, gdzie byty juz L + 3 kule. Przypisujemy dzieciom korzenia kule, ktore
znajdowaty sie najwyzej w tych urnach w momencie wrzucania kuli korzenia. Dalej postepujemy

tak samo z dzieémi az cale drzewo zostanie skonstruowane.

Mozna zauwazy¢, ze kula korzenia zostata wrzucona do swojej urny po co najmniej L+ 3 innych
kulach. Podobnie w momencie wrzucania kul kazdego z dzieci korzenia, w ich urnach byty juz

co najmniej L + 2 kule itd.

Zauwazmy tez, ze kazda kula reprezentowana przez lis¢ miala juz co najmniej 3 inne kule w

urnie w momencie jej wrzucania.

Otrzymalidémy drzewo swiadczace o wszystkich krawedziach i liSciach aktywnych, wiec jest to

drzewo aktywne. O]

Jedli udatoby sie ograniczy¢ z gory prawdopodobienistwo na istnienie aktywnego drzewa swiad-
czacego rzedu L, to byloby to takze ograniczenie na prawdopodobiefistwo, ze istnieje urna o co

najmniej L + 4 kulach.

Jesdli w drzewie sSwiadczacym jest m wierzchotkow, to mozemy przypisa¢ im kule na n™ spo-
sobow. Prawdopodobienistwo, ze krawedZ (u,v) jest aktywna jest co najwyzej %, poniewaz
prawdopodobienistwo, ze i-ta lokacja u trafi w wybrana z lokacji v jest co najwyzej % 7 nie-
zaleznosci prawdopodobienstwo, ze wszystkie krawedzie sa aktywne jest co najwyzej (%)m_l.
Prawdopodobienstwo aktywacji konkretnego lidcia jest co najwyzej 3%, poniewaz kazda z lokacji
kuli liscia musi trafic w urng o co najmniej 3 innych kulach - a takich urn jest co najwyzej 3.
Tym samym gdy oznaczymy przez ¢ liczbe lisci w drzewie, to prawdopodobieristwo aktywacji

wszystkich lidci jest co najwyzej 37%.
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Laczac to wszystko ze soba i naktadajac union bounda dostajemy ograniczenie na istnienie

m—1
nm . é . 3*dq
n

Zachodza takze nastepujace ograniczenia: m < 2q oraz 2d?> < 3%. Gdy podstawimy je wraz z

aktywnego drzewa swiadczacego:

q = d* dostaniemy ograniczenie:

m—1
n™ - (é> 37—y gt 3T <y g2 37

n

<n.279.3.37d — . 9-d"

A gdy wezmiemy L > log,log, n + log,(1 + a) dla a > 0, ograniczymy prawdopodobieristwo

istnienia odpowiedniego aktywnego drzewa $wiadczacego przez n~—.

Konstrukcja pelnych drzew $wiadczacych

W poprzedniej czesci dowodu rozwazaliémy tylko prawdopodobienistwo aktywacji drzew $wiad-
czacych o parami réznych kulach. W rzeczywistosci jednak ta sama kula moze wystapi¢ w
drzewie wielokrotnie - i wtedy zdarzenia konstruujace drzewo nie sa juz niezalezne. W tym
celu mozemy poodcinaé¢ niektére wierzchotki, ktére nam sie nie beda podobaé, aby przywrocié
niezaleznosé. Odcinanie wierzchotkéow zwicksza jednak prawdopodobieristwo aktywacji takiego

drzewa, wiec zaczniemy od wiekszej struktury.

Definicja 26.1.4. Pelne drzewo $wiadczace rzedu L dla pewnej statej k € Ny ma nastepu-
jaca konstrukcje: Korzen drzewa ma x dzieci, kazde z ktoérych ma doktadnie jedno dziecko - tym
samym korzen ma takze x wnukow. Kazdy z wnukéw jest korzeniem standardowego drzewa
swiadczacego rzedu L. W dodatku, w pelnym drzewie $wiadczacym kule przypisane do dzieci

korzenia musza by¢ parami rézne, a korzen jako jedyny nie ma przypisanej kuli.

Lemat 26.1.2. Jedli ktoras z urn posiada wiecej niz L + 3 4+ « kul, to istnieje aktywne pelne

drzewo $wiadczace.

Dowaod. Niech urna z posiada co najmniej L+4+x kul. Wybieramy z niej x ostatnio wrzuconych
kul i przyporzadkowujemy je dzieciom korzenia. Nastepnie przyporzadkujemy kule wnukom.
Rozwazmy kule b przypisang do v - dziecka korzenia. Przynajmniej jedna z lokacji b wskazuje
na urne x - jesli jest ich wiecej, nalezy wybra¢ jedna z nich. Niech ¢ to indeks tej lokacji. WezZmy
nastepna lokacje, czyli t4+1 mod d. W momencie wrzucania b, ta lokacja wskazuje na urne o co
najmniej L 4 3 kulach. Ostatnio wrzucong do tej urny kule przed wrzuceniem b przypisujemy

do dziecka v, czyli wnuka korzenia. O]
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Przycinanie pelnych drzew $wiadczacych

Definicja 26.1.5. Zdefiniujemy przyciete pelne drzewo $§wiadczace konstrukcyjnie. Za-
czynajac od pelnego drzewa $wiadczacego, bedziemy odcina¢ jego krawedzie w odpowiedni
sposob. Poczawszy od korzenia, przegladamy drzewo w kolejnosci BFS. Za kazdym razem gdy
przegladamy wierzchotek v, ktory reprezentuje kule, ktora byta juz widziana wczesniej, prze-
cinamy krawedz taczaca v z jego rodzicem. Odcinamy w ten sposéb v wraz z calym jego
poddrzewem. Zauwazmy, ze procedura ta nie odetnie nigdy dzieci korzenia, gdyz reprezentuja
kule parami rézne. Przeciete w ten sposob krawedzie bedziemy dalej nazywac odcietymi ("cutoff
edge"). Kontynuujemy odcinanie do momentu, az przegladniemy cale drzewo albo odetniemy
krawedzi. Do przycietego drzewa swiadczacego trafiaja jednak tylko przegladniete wierzchotki

i krawedzie, wraz z krawedziami odcietymi, jako swiadectwo miejsc odciecia.

Wyrézniamy dwa przypadki.

Przypadek 1 - mniej niz x odcietych

Jesli odcieliémy mniej niz x krawedzi, to znaczy, ze jeden z wnukoéw korzenia wraz z poddrzewem
przetrwal przycinanie. To oznacza, ze mamy aktywne drzewo $wiadczace o parami réznych

kulach, a prawdopodobienistwo na to juz ograniczyliSmy przez n~=?.

Przypadek 2 - x odcietych

Pozostaje jedynie ograniczy¢ prawdopodobienistwo wystapienia aktywnego przycietego drzewa
swiadczacego o k odcietych krawedziach. Ograniczymy to prawdopodobienistwo przy zalozeniu,
ze liczba kul reprezentowanych przez pelne drzewo $wiadczace jest co najwyzej M = 2k(a +
1) log, n. Jest co najwyzej M* sposobow na przyciecie pelnego drzewa $wiadczacego - zamiane
pelnego drzewa $wiadczacego w przyciete. Niech m bedzie liczba kul reprezentowanych przez
przyciete drzewo, a ¢ to liczba lisci. Liczba sposobéw na dopasowanie kul do wierzchotkow
to co najwyzej n™. Przyjmijmy, ze korzen przycietego drzewa (ktory nie ma przypisanej kuli)
zamiast tego ma przypisang urne, z ktorej wyjelismy kule dla jego dzieci. Jest n sposobéw na

wybranie tej urny, i majac te urne prawdopodobienistwo aktywacji wszystkich krawedzi to co
d

najwyzej (E)m, a prawdopodobienstwo, ze wszystkie liscie sg aktywne jest ograniczone przez

34,

Okazuje sie, ze dostaliémy niemal to samo ograniczenie. Mimo to, ¢ i m moga by¢ mniejsze niz

poprzednio. Mozemy jednak wciaz wyciagnaé lepsze ograniczenie patrzac na odciete krawedzie.

Kazda odcieta krawedz jest Swiadkiem, ze jakas kula b reprezentowana przez nieprzyciety wierz-
chotek u dzieli lokacje z jakas kulg b’ innego wierzchotka u’ - jest to powod, dlaczego ta krawedz
zostala odcieta. Wierzcholek u' zostal przegladniety przed u, wiec z pewnoscig jest czescig przy-
cietego drzewa swiadczacego. Przycieta krawedz opisuje, ktora lokacja kuli b trafita w lokacje
dzielona z kulg ¢'. Liczba mozliwosci na wybranie «’ i tym samym b’ jest ograniczona z gory

przez m < M. Prawdopodobienistwo, ze wybrana lokacja b trafi w te sama urne co ktoras z lo-
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kacji b’ jest co najwyzej %. Tym samym prawdopodobieristwo posiadania x odcietych krawedzi

ograniczamy przez (M %)H.

Mozemy teraz zauwazy¢, ze skoro pozbylismy sie zbednych kul, a wszystkie liSciozdarzenia, kra-

wedziozdarzenia i odcieciozdarzenia sa niezalezne, to pozostaje przejs¢ do ostatecznego ogra-

niczenia, co nastepuje:

Stosujemy teraz podobne ograniczenia jak poprzednio: m < 2¢, d? < 3¢ oraz M < 2k(a +

1) log, n.

2 7\ # 2
n-dm-qu-(Md> Sn_(Md)
n n

<n (d(2/{(a + 1)log,n) ) " _ prlo(D)
n

To zamyka ograniczenie drugiego przypadku, a tym samym caty dowod.
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Pytanie 26

(%). Sita dwu wyboréw. Model eksperymentu, wypowiedzi twierdzen. Do-
wod ograniczenia dolnego.

W tej sekcji znajduje sie wyltacznie dowod ograniczenia dolnego. Model eksperymentu oraz

wypowiedzi twierdzen znajduja sie w rozdziale [24]

27.1 Ograniczenie dolne

Teraz bedziemy dowodzié, ze:

1
P(logyInn — O(1) < max(Xi,...,X,)) >1——

n

Czyli dowodzimy ograniczenie dolne twierdzenia Co wazne, nie robimy tego w pelnym
wariancie tego twierdzenia, czyli dla n® dla dowolnego «, a wytacznie dla o = 1. Tak samo
jest jednak w ksigzce oraz w materiatach ktore otrzymalidémy i na egzaminie wystarczy znajo-

mos¢ ponizszego dowodu. Sam dowodd przebiega bardzo podobnie do iteracyjnego ograniczenia

gornego.
Niech
Yo ="
_ . n Yi\?
=55 ()
Lemat 27.1.1.
B n
Vi = Y4t (i+2—k)2*
W szczegolnodci:
n
ryi Z 24,21‘

Dowod. Mozna to pokaza¢ indukcyjnie. Zauwazmy, ze dla ¢ = 0 suma w potedze mianownika

wyniesie 0, zatem faktycznie vy = n. Zaktadamy, ze powyzszy wzor jest prawdziwy dla ~;.
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Pokazujemy prawdziwosé dla v;,1:
no%2
1 = 555 ()

_n 1 2
T i3 Yo (—+2—k)2k

n

- 9i+3 . 9235 (i+2—k)2*
n

T 0it3 . oY h(it2-kj2k i

B n

 9i43 . 92 h_y (i+3—k)2k

B n

9o (i+3—k)2k

]

Zdefiniujmy teraz F; jako zdarzenie zachodzace jesli v; (n(1 — 5;)) > 7. Widzimy, ze P(Fy) = 1.
Bedziemy wykazywac, ze P(—F;11 | F;) jest male.

Ustalmy i oraz t € R = [n(1 — 2%),n(1 — 557)]. Zdefiniujmy zmienng losows Z;:

thlﬁh(t):Z—{—l\/l/l_i_l(t—l)z”yH_l

P(h(t) = i+1) = (M) ) (Vz‘+1(t— 1))2

n n

Dodatkowo:

Poniewaz aby t-ta kula byta na (i + 1)-szym poziomie, to musimy dwukrotnie wylosowaé¢ urne
majaca przynajmniej ¢ kul (lecz nie wylosowaé¢ dwa razy urny majacej przynajmniej i + 1 kul).

Ograniczamy z dotu P(Z, = 1), znajac wyniki poprzednich rzutow:

P(Zy=1[(Ky,... K1) = (w1, .. wi1), Fi) > (%)2 _ (’Yi+1>2

(- ()
309

Pierwsza nieréwnos¢ wynika z tego, ze albo v;41(t — 1) > 741, co samo daje nam Z; = 1, albo

Vit1(t — 1) < ;41 oraz v;(t — 1) > 7, (z warunkowania po F;)

2
P(Z=1] (K, Kia) = (w1, swi1), F) 2 = 5 ()
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Z lematu [24.2.3| otrzymujemy:

o/ n
P(Z Zy < Yig1 | fi) < P(Bm<%,pi> < %‘+1>

teR

1
n

[\

Gdzie druga nieréwnos$¢ wynika z[24.2.1} a trzecia dziata dla 5&r > 171Inn.

Jezeli zaszto —F; 1 to bezposrednio z definicji F; mamy

1
Vier Vi1 (t — 1) < vip (n (1 — 2”1)) < Vit1
W takim razie, dalej dla —F; 1, otrzymujemy

ZZt = Z[h(t) =1+ 1]

teR teR

1
confo(- )

< Yit1

Skoro ~Fip1 = Y e Zt < Vi1 tO

1
P(~Fin | Fi) < P(Zzt < i1 | E) <

i€R
Gdzie ostatnia nieréwnos¢ ponownie jest prawdziwa dla takich i, ze 3£+ > 17Inn. Niech i
bedzie najwickszym ¢ spelniajacym ta nieréwnosé. Wtedy:

%

Fi1)...P(F\ | Fo) P(Fy) > (1 - i?)

n

P(F) > P(F:

Teraz chcielibyémy poznaé i*. Podobnie jak dla poprzedniego dowodu, tworzymy sobie ciag

. . . . . 2 N2
coraz mocniejszych nieréwnosci. Przypomnijmy, ze p; = %(%) 0raz Yit1 = sz - (%)
n . n . 2
Pi _ 1 = D,
91 92\ ) T~ it

27i+1 > 17Inn

Poniewaz v; > /% (z[27.1.1):

2-#21711171

4,2i+1 < 2”
~ 17lnn
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4 -2 <log, 2 + logy n — log,y(171Inn)

Dla wystarczajaco duzego n, to jest mocniejsza niero6wnos¢:

lnn

4_2i+1 <
~ 2In2

1
2+:1+1< 10g21nn—|—10g2(m)
n

i <logyInn—0O(1)

Zatem Il
nlnn
¥ > log, Inn — O(1) = - 01
i 2 logylnn — O(1) = ==~ O(1)
oraz: .
1 (A
P(Fi) > (1 — $>

Pozostalo teraz tylko dowiezé (1 — %)Z >1-— % dla odpowiednio duzego n, z czego bedziemy

juz mieli P(Fpx) > 1— %, a wiec z wysokim prawdopodobieristwem istnieje urna z przynajmniej

1* kulami, co koniczy dowod. Przejdzmy wiec do tej ostatniej czedci

1 lnlrlann —c 1 lrillann 1 _nQ' :zlznll;lzn
1— — >(1- = =(1-=

—7'L2 .
(1 — %) dazy do e z gory, zatem:

n

2

e > (4/3)" > (1 — %)_n > e

_ 2. —Inlnn

—2Inlnn ]_ " n21n2 —Inlnn
e nZmz < |1 — — < e nZh2
= ’TL2 =

Teraz skorzystamy z rozwiniecia e® w szereg Taylora
s _ 1 2 28
ee=14+x+ o + 3 + ...

mozemy zauwazy¢, ze dla z € (—¢,0)
l+x+22>e*>14+x—2°

zatem:

_,2—Inlnn

1 1 <1 2lnlnn 2lnlnn 2< | 1 e
n = n2ln?2 n21n 2 - n2

gdzie pierwsza nieréwnos$é zachodzi dla wystarczajaco duzego n a druga wynika z dolnego

ograniczenia na e”.
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Dodatkowe materialy

W tym rozdziale znajduja sie twierdzenia i lematy, ktore nie sg bezposrednio czescig zadnego

pytania, ale jakies dowody do nich linkuja.

28.1 Aproksymacja szeregu harmonicznego

Lemat 28.1.1. H, =1In(n) + (1)

)
1
1%%
1
2
5 1
3 ! 1
x
1 1 1 1 1
1223312455566
n—1 A
1 "1
- = an] > / —dr = ln(n)
i LT
Zf] = In(n) < H, <Iln(n)+1
n 1 nl
ZHn—lg/ —dz = In(n)
— i LT )

28.2 Wartos¢ oczekiwana iloczynu

Twierdzenie 28.2.1. Dla dowolnych niezaleznych zmiennych losowych X i Y:

E[X - Y] = E[X]-E[Y]
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Dowad.

E[X-Y]zZZ(ij)-P(XziﬂY:j)

28.3 Wartos¢ oczekiwana naturalnej zmiennej losowej

Twierdzenie 28.3.1 (Lemat 2.9 P&C). Niech X bedzie zmienna losowa przyjmujaca jedynie

wartosci w liczbach naturalnych. Wtedy
E[X] =) P(X >n)
n=1
Dowad.

> P(X=n)=> Y P(X=k)

n=1 k=n

=> ) P(X =k)

k=1 n=1

I
5
s
S

I
=

28.4 Rownosé funkcji tworzacych

Twierdzenie 28.4.1. (Bez dowodu)
Niech X, Y - zmienne losowe.

Jezeli zachodzi:
Vie(-s0Mx(t) = My(t)

gdzie § > 0 oraz Mx(t) i My (t) istnieja w przedziale (—9,d) to X 1 Y maja ten sam rozklad.
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28.5 Ograniczenie gérne Czernowa préb Poissona

Twierdzenie 28.5.1. Niech X1, ..., X, to niezalezne proby Poissona. Dodatkowo oznaczamy
X =537 X;ip=E[X]. Wtedy dla kazdego ¢ € (0,1) zachodzi

1. P(X < (1-0)u) < (ﬁ)”

2

2. P(X < (1—6)p) <e .
Dowdd. Dowod identyczny jak w [4.1.2] wybieramy ¢ = In(1 — J) < 0 i korzystamy z tego, ze
e~ % jest antymonotoniczne. Drugiego punktu ponownie dowodzimy liczac pochodne i na ich

podstawie dowodzac odpowiedniej nieréwnosci. O
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